【題目】甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分輸入漢字的個數(shù)統(tǒng)計結果如下表:
班級 | 參加人數(shù) | 中位數(shù) | 方差 | 平均數(shù) |
甲 | 55 | 149 | 1.91 | 135 |
乙 | 55 | 151 | 1.10 | 135 |
某同學分析上表后得到如下結論:
①甲、乙兩班學生平均成績相同;
②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分輸入漢字個數(shù)為優(yōu)秀)
③甲班成績的波動比乙班大.
上述結論中正確的是( )
A.①②③B.①②C.①③D.②③
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D、E分別在AB、AC上,要得到△ABE≌△ACD,可添加條件( )
A. ∠A=∠AB. ∠ABC=∠ACBC. BE=CDD. AD=AE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假降至,丹尼斯大賣場為回饋新老顧客,進行有獎促銷活動活動. 活動規(guī)定:購買500元的商品就可以獲得一次轉轉盤的機會(轉盤分為5個區(qū)域,分別是特等獎、一等獎、二等獎、三等獎、不獲獎),轉盤指針停在哪個獲獎區(qū)域就可以得到該區(qū)域相應等級獎品一件(如果指針恰好停在分割線上,那么重轉一次,直到指針指向某一區(qū)域為止). 大賣場工作人員在制作轉盤時,將各扇形區(qū)域圓心角(不完全)分配如下表:
獎次 | 特等獎 | 一等獎 | 二等獎 | 三等獎 | 不獲獎 |
圓心角 | _________ |
促銷公告:凡購買我大賣場商品500元均有可能獲得下列獎品:
特等獎:山地越野自行車一輛 一等獎:雙肩背包一個
二等獎:洗衣液一桶 三等獎:抽紙一盒
根據(jù)以上信息,解答下列問題:
(1)求不獲獎的扇形區(qū)域圓心角度數(shù)是多少?
(2)求獲得雙肩背包的概率是多少?
(3)甲顧客購物520元,求他獲獎的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°.點P是射線AB上一動點(與點A不重合),CE、CF分別平分∠ACP和∠DCP交射線AB于點E、F.
(1)求∠ECF的度數(shù);
(2)隨著點P的運動,∠APC與∠AFC之間的數(shù)量關系是否改變?若不改變,請求出此數(shù)量關系;若改變,請說明理由;
(3)當∠AEC=∠ACF時,求∠APC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,為中點,過點的直線分別與,交于點,,連接交于點,連接,.若,,則下列結論:
①,;
②;
③四邊形是菱形;
④.
其中正確結論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象過點,.
(1)求此函數(shù)的解析式.
(2)求出次函數(shù)圖象與軸,軸的交點,的坐標.
(3)若直線與相交于點,,與軸圍成的的面積為6,求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在讀書月活動中,學校準備購買一批課外讀物.為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類),如圖是根
據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了 名同學;
(2)條形統(tǒng)計圖中,m= ,n= ;
(3)扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是 度;
(4)學校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學校購買其他類讀物多少冊比較合理?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com