【題目】商場銷售一批名牌襯衫,平均每天可售出40件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件.
(1)若商場平均每天要盈利2400元,每件襯衫應降價多少元?
(2)若該商場要每天盈利最大,每件襯衫應降價多少元?盈利最大是多少元?
【答案】(1)20元;(2)降價15元時,商場平均每天盈利最多,每天最多盈利2500元.
【解析】
(1)先設未知數(shù):設每件襯衫應降價x元,每件襯衫每降價1元,商場平均每天可多售出4件,根據(jù)“利潤=銷售的數(shù)量每件的盈利”,列方程可求得;
(2)設利潤為w元,列出w的表達式,再利用二次函數(shù)的性質(zhì)求解即可.
(1)設每件襯衫應降價x元
由題意得:
整理得:,即
解得:或
因為商場的目標是擴大銷售,增加盈利,盡快減少庫存
所以
答:每件襯衫應降價20元;
(2)設每件襯衫應降價x元時,平均每天利潤為w元,則
由題意得:
由二次函數(shù)的性質(zhì)可知:當時,w隨x的增大而增大;當時,w隨x的增大而減小
則當時,w有最大值為2500元
答:每件襯衫降價15元時,商場平均每天盈利最多,每天最多盈利2500元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.
(1)求sin∠CAH的值;
(2)如果CD=,求BE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點,B是頂點),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點C開始不斷重復圖形W形成一組“波浪線”.若點,在該“波浪線”上,則m的值為________,n的最大值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軍參加東臺國貿(mào)大廈慶“慶元旦翻牌抽獎”活動,背面完全相同的4張牌分別對應價值5,10,15,20(單位:元)的4件獎品.
(1)如果隨機翻1張牌,那么抽中20元獎品的概率為 ;
(2)用列樹狀圖或表格的方法求出如果隨機翻2張牌,且第一次翻過的牌不再參加下次翻牌,求所獲獎品總值不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB為⊙O的直徑.
(1)如圖a,點D為 的中點,當弦BD=AC時,求∠A.
(2)如圖b,點D為的中點,當AB=6,點E為BD的中點時,求OE的長.
(3)如圖c,點D為上任意一點(不與A、C重合),若點C為的中點,探求BD、AD、CD之間的數(shù)量關系,直接寫出你探求的結論,不要求證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,過⊙T外一點P引它的兩條切線,切點分別為M,N,若,則稱P為⊙T的環(huán)繞點.
(1)當⊙O半徑為1時,
①在中,⊙O的環(huán)繞點是___________;
②直線y=2x+b與x軸交于點A,y軸交于點B,若線段AB上存在⊙O的環(huán)繞點,求b的取值范圍;
(2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構成圖形H,若在圖形H上存在⊙T的環(huán)繞點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E為BC的中點,將△ABE沿直線AE折疊后,點B落在點F處,AF交對角線BD于點G,則FG的長是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸的一個交點為,與軸的交點在點與點之間(包含端點),頂點的坐標為。則下列結論:①;②;③對于任意實數(shù),總成立;④關于的方程沒有實數(shù)根。其中結論正確的個數(shù)為()
A.個B.個C.個D.個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com