【題目】生活垃圾分類回收是實現(xiàn)垃圾減量化和資源化的重要途徑和手段.為了解2019年某市第二季度日均可回收物回收量情況,隨機抽取該市2019年第二季度的天數(shù)據(jù),整理后繪制成統(tǒng)計表進行分析.
日均可回收物回收量(千噸) | 合計 | |||||
頻數(shù) | 1 | 2 | 3 | |||
頻率 | 0.05 | 0.10 | 0.15 | 1 |
表中組的頻率滿足.
下面有四個推斷:
①表中的值為20;
②表中的值可以為7;
③這天的日均可回收物回收量的中位數(shù)在組;
④這天的日均可回收物回收量的平均數(shù)不低于3.
所有合理推斷的序號是( )
A.①②B.①③C.②③④D.①③④
【答案】D
【解析】
①根據(jù)數(shù)據(jù)總和=頻數(shù)÷頻率,列式計算即可得出m的值;
②根據(jù)的頻率a滿足,可求出該范圍的頻數(shù),進一步得出b的值的范圍,從而求解;
③根據(jù)中位數(shù)的定義即可求解;
④根據(jù)加權(quán)平均數(shù)的計算公式即可求解.
解:①日均可回收物回收量(千噸)為時,頻數(shù)為1,頻率為0.05,所以總數(shù)m=,推斷合理;
②20×0.2=4,20×0.3=6,
1+2+6+3=12,故表中b的值可以為7,是不合理的推斷;
③1+2+6=9,故這m天的日均可回收物回收量的中位數(shù)在組,是合理推斷;
④(1+5)÷2=3,0.05+0.10=0.15,這天的日均可回收物回收量的平均數(shù)不低于3,是合理推斷.
故選:D
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=5,BC=4,E是BC邊上一點,連接DE,將矩形ABCD沿DE折疊,頂點C恰好落在AB邊上點F處,延長DE交AB的延長線于點G.
(1)求線段BE的長;
(2)連接CG,求證:四邊形CDFG是菱形;
(3)如圖2,P,Q分別是線段DG,CG上的動點(與端點不重合),且∠CPQ=∠CDP,是否存在這樣的點P,使△CPQ是等腰三角形?若存在,請直接寫出DP的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,P是△ABC外部的一定點,D是線段BC上一動點,連接PD交AC于點E.
小明根據(jù)學習函數(shù)的經(jīng)驗,對線段PD,PE,CD的長度之間的關(guān)系進行了探究,
下面是小明的探究過程,請補充完整:
(1)對于點D在BC上的不同位置,畫圖、測量,得到了線段PD,PE,CD的長度的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
PD/cm | 2.56 | 2.43 | 2.38 | 2.43 | 2.67 | 3.16 | 3.54 | 4.45 | 5.61 |
PE/cm | 2.56 | 2.01 | 1.67 | 1.47 | 1.34 | 1.32 | 1.34 | 1.40 | 1.48 |
CD/cm | 0.00 | 0.45 | 0.93 | 1.40 | 2.11 | 3.00 | 3.54 | 4.68 | 6.00 |
在PD,PE,CD的長度這三個量中,確定 的長度是自變量, 的長度和 的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標系xOy中,畫出圖2中所確定的兩個函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:
連接CP,當△PCD為等腰三角形時,CD的長度約為 cm.(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在⊙O中按如下步驟作圖:
(1)作⊙O的直徑AD;
(2)以點D為圓心,DO長為半徑畫弧,交⊙O于B,C兩點;
(3)連接DB,DC,AB,AC,BC.
根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中錯誤的是( 。
A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax.
(1)二次函數(shù)圖象的對稱軸是直線x= ;
(2)當0≤x≤3時,y的最大值與最小值的差為4,求該二次函數(shù)的表達式;
(3)若a<0,對于二次函數(shù)圖象上的兩點P(x1,y1),Q(x2,y2),當t≤x1≤t+1,x2≥3時,均滿足y1≥y2,請結(jié)合函數(shù)圖象,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與一次函數(shù)的圖象交于點與反比例函數(shù)的圖象交于點,點與點關(guān)于軸對稱.
(1)直接寫出點的坐標;
(2)求點的坐標(用含的式子表示);
(3)若兩點中只有一個點在線段上,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點:三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過點作直線的垂線,垂足為點,過點作軸,垂足為點,過點作,垂足為點…,這樣依次下去,得到一組線段…,則線段的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形中,.點從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向在的延長線上勻速運動,速度為;當點到達點時,點停止運動.過點作,交于點.連接.設(shè)運動時間為,解答下列問題:
連接,當為何值時,
設(shè)四邊形的面積為,求與的函數(shù)關(guān)系式;
在運動過程中,是否存在某一時刻,使四邊形的面積為四邊形面積的,若存在,求出的值;若不存在,請說明理由;
在運動過程中,是否存在某一時刻, 使若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com