【題目】如圖,ABBC,射線CMBC,且BC=4,AB=1,點(diǎn)P是線段BC(不與點(diǎn)B、C重合)上的動(dòng)點(diǎn),過點(diǎn)PDPAP交射線CM于點(diǎn)D,連結(jié)AD.

(1)如圖1,若BP=3,求△ABP的周長;

(2)如圖2,若DP平分∠ADC,試猜測(cè)PBPC的數(shù)量關(guān)系,并說明理由;

(3)若△PDC是等腰三角形,作點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)B′,連結(jié)B′D,則B′D=_____.(請(qǐng)直接寫出答案)

【答案】1+5;(2PB=PC;(35

【解析】

試題(1)根據(jù)勾股定理直接求出AP的值就可以求出結(jié)論;

2)延長線段AP、DC交于點(diǎn)E,就可以得出△DPA≌△DPE,就有AP=PE,在證明△APB≌△EPC就可以得出結(jié)論;

3)連接AB′,PB′,作B′E⊥CDE,就可以得出PB′=CE=1,DE=2,在Rt△B′DE中由勾股定理就可以求出結(jié)論.

試題解析:(1∵AB⊥BC∴∠ABP=90°,

∴AP2=AB2+BP2

∴AP=,

∴AP+AB+BP=+1+4=+5

∴△APB的周長為+5;

2PB=PC,

理由如下:

延長線段AP、DC交于點(diǎn)E

∵DP平分∠ADC,

∴∠ADP=∠EDP

∵DP⊥AP,

∴∠DPA=∠DPE=Rt∠

△DPA△DPE

∴△DPA≌△DPEASA),

∴PA=PE

∵AB⊥BPCM⊥CP,

∴∠ABP=∠ECP=Rt∠

△APB△EPC

,

∴△APB≌△EPCAAS),

∴PB=PC;

3)答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y= (n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);
(3)直接寫出不等式;kx+b≤ 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AC于點(diǎn)D,且ED⊥AC.

(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點(diǎn)F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=150°,AC=4,tanB=

(1)求BC的長;
(2)利用此圖形求tan15°的值(精確到0.1,參考數(shù)據(jù): =1.4, =1.7, =2.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長沙”的號(hào)召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(dòng)(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為:;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請(qǐng)你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③SABG= SFGH;④AG+DF=FG.
其中正確的是 . (把所有正確結(jié)論的序號(hào)都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點(diǎn)R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋中裝有相同的三個(gè)小球,其上面分別標(biāo)注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個(gè)小球,將其上面的數(shù)字作為點(diǎn)M的橫坐標(biāo);將球放回袋中攪勻,再從中任意摸出一個(gè)小球,將其上面的數(shù)字作為點(diǎn)M的縱坐標(biāo).
(1)寫出點(diǎn)M坐標(biāo)的所有可能的結(jié)果;
(2)求點(diǎn)M在直線y=x上的概率;
(3)求點(diǎn)M的橫坐標(biāo)與縱坐標(biāo)之和是偶數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案