【題目】如圖,在中,,PBC上一動點,過PAP的垂線交CDE,將翻折得到,延長FPABH,連結(jié)AEPEACG.

1)求證;

2)當時,求AE的長;

3)當時,求AG的長.

【答案】1)見解析;(2;(3

【解析】

1)先證明P、C、F共線,由余角的性質(zhì)可證,根據(jù)等角對等邊證明,再由余角的性質(zhì)證明和等角對等邊證明,結(jié)論可證;

2)過AM,由勾股定理可求BC=4,然后求出MP的長,再由勾股定理求出AP的長,由是等腰直角三角形可求出AE的長;

3)通過證明,可得,由外角的性質(zhì)可求出∠PAF=F=22.5°,再根據(jù)角的和差和三角形內(nèi)角和定理證明,然后求出,然后通過證明,利用相似三角形的對應邊成比例即可求解.

1)∵四邊形ABCD是平行四邊形,

,

,

,

,

FAC的延長線上.

,

,,

,,

,,,

,,

2)過AM

,

BC=4,

,

BP=3,CP=,

,

由(1)知AP=AE,

是等腰直角三角形,

3)由,且

,

,,

,,

,而,

,,

,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某初中學校舉行校園歌唱大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列題:

1)請將條形統(tǒng)計圖補全;

2)獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加全市校園歌唱大賽,請通過列表或畫樹狀圖求所選出的兩人中有七年級或八年級同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,的直徑,點的延長線上,延長的延長線于點,點的中點,

1)求證:的切線;

2)求證:是等腰三角形;

3)若,,求的值及的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請用含的式子表示的面積;提示:過點邊上的高

2)類比探究:如圖2,在一般的中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請說明理由.

3)拓展應用:如圖3,在等腰三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,外一點,將繞點按順時針方向旋轉(zhuǎn)得到,且點、、三點在同一直線上.

1)(觀察猜想)

在圖①中, ;在圖②中, (用含的代數(shù)式表示)

2)(類比探究)

如圖③,若,請補全圖形,再過點于點,探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)(問題解決)

,,,求點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的,兩點,與軸交于點,過點軸,垂足為點,,,點的縱坐標為

1)求點的坐標;

2)求該反比例函數(shù)和一次函數(shù)的解析式;

3)連接,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=-x2bxc與一直線相交于A(1,0),C(2,3)兩點,與y軸交于點N,其頂點為D.

(1)求拋物線及直線AC的函數(shù)關(guān)系式;

(2)設點M(3,m),求使MNMD的值最小時m的值;

(3)若拋物線的對稱軸與直線AC相交于點BE為直線AC上的任意一點,過點EEFBD交拋物線于點F,以B,DE,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點AACx軸于點C,過點BBDx軸于點D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點P的坐標;

(3)x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為中,弦,所對的圓心角分別是,若,,則弦的長等于( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案