【題目】如圖,在平面直角坐標系中,菱形的頂點為坐標原點,且與反比例函數(shù)的圖象相交于,兩點,且點的縱坐標為,已知點,則的值為( ).
A.B.C.9D.
【答案】D
【解析】
作AE⊥x軸交x軸于點E,作CF⊥x軸交x軸于點F,作BD∥x軸交AE于點D,證明△ADB≌△CFO,求出AD=CF=,同理證明△AEO≌△OFC,求出OF=AE=,得到點C坐標即可解決問題.
解:作AE⊥x軸交x軸于點E,作CF⊥x軸交x軸于點F,作BD∥x軸交AE于點D,
∵四邊形AOCB是菱形,
∴AB∥CO,AB=CO,
∴∠ABO=∠COB,
又∵BD∥x軸,
∴∠DBO=∠FOB,
∴∠ABD=∠COF,
∵AD⊥BD,CF⊥OF,
∴∠ADB=∠CFO=90°,
又∵AB=CO,
∴△ADB≌△CFO(AAS),
∴AD=CF,
∵C點的縱坐標為,,
∴AD=CF=,
∴AE=,
同理可證,△AEO≌△OFC,
∴OF=AE=,
∴點C的坐標為(,),
∴k=,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.了解一批燈泡的使用壽命采用全面調(diào)查
B.一組數(shù)據(jù)6,5,3,5,4的眾數(shù)是5,中位數(shù)是3
C.“367人中必有2人的生日是同一天”是必然事件
D.一組數(shù)據(jù)10,11,12,9,8的平均數(shù)是10,方差是1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:
①當x>3時,y<0;
②3a+b<0;
③;
④;
其中正確的結(jié)論是( )
A.①③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖等腰直角沿MN所在的直線以的速度向右作勻速直線運動,若,則和正方形重疊部分的面積與勻速運動所有的時間之間函數(shù)的大致圖像是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中∠A=∠ABC=90°,點E是CD的中點,△ABD與 △EBD關(guān)于直線BD對稱,,.
(1)求點A和點E之間的距離;
(2)聯(lián)結(jié)AC交BE于點F,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì),小李根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.
下面是小李探究的過程,請補充完整:
(1)函數(shù)的自變量的取值范圍是______;
(2)下表是與的幾組對應(yīng)值:
… | 0 | 2 | 3 | 4 | 5 | … | ||||
… | 0 | 5 | 3 | 2 | … |
則的值為_______;
(3)如圖所示,在平面直角坐標系中,根據(jù)描出的點,請補全此函數(shù)的圖象;
(4)觀察圖象,寫出該函數(shù)的一條性質(zhì)_______;
(5)若函數(shù)的圖象在函數(shù)的圖象上方,直接寫出的取值范圍_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,,,點是的中點,點是邊上的一個動點,將沿所在直線翻折,得到,連接,,則當是以為腰的等腰三角形時,的長是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個交點.
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出當x滿足什么范圍時,直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣1與拋物線y=﹣x2+6x﹣5相交于A、D兩點.拋物線的頂點為C,連結(jié)AC.
(1)求A,D兩點的坐標;
(2)點P為該拋物線上一動點(與點A、D不重合),連接PA、PD.
①當點P的橫坐標為2時,求△PAD的面積;
②當∠PDA=∠CAD時,直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com