【題目】某地特產(chǎn)檳榔芋深受歡迎,某商場以7元/千克收購了3000千克優(yōu)質(zhì)檳榔芋,若現(xiàn)在馬上出售,每千克可獲得利潤3元.根據(jù)市場調(diào)查發(fā)現(xiàn),近段時間內(nèi)檳榔芋的售價每天上漲0.2元/千克,為了獲得更大利潤,商家決定先貯藏一段時間后再出售.根據(jù)以往經(jīng)驗,這批檳榔芋的貯藏時間不宜超過100天,在貯藏過程中平均每天損耗約10千克.

1)若商家將這批檳榔芋貯藏x天后一次性出售,請完成下列表格:

每千克檳榔芋售價(單位:元)

可供出售的檳榔芋重量(單位:千克)

現(xiàn)在出售

3000

x天后出售

2)將這批檳榔芋貯藏多少天后一次性出售最終可獲得最大利潤?

【答案】110, (2)39000

【解析】

(1)根據(jù)已知條件填表即可;

(2)天后出售,按照等量關(guān)系利潤=售價銷售量-成本列出函數(shù)關(guān)系式,求解即可.

解:(17+3=10(元),

x天后出售的售價為(10+0.2x)元/千克,

可供出售的檳郎芋重量為(3000-10x)千克,

故答案為:10,

2)設(shè)利潤為y,依題意得:

=-2x+500x+9000

-2<0,開口向下,∴有最大值

對稱軸x=

∴當x<125時,yx的增大而增大

∴當x=100時,y最大=-2×1002+500×100+9000=39000

答:將這批檳榔芋貯藏100天后一次性出售最終可獲得最大利潤39000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BEAD于點F.

(1)求證:△BDF是等腰三角形;

(2)如圖2,過點DDGBE,交BC于點G,連接FGBD于點O.

①判斷四邊形BFDG的形狀,并說明理由;

②若AB=6AD=8,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點PAC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當AP旋轉(zhuǎn)至AP′AB時,點B、P、P′恰好在同一直線上,此時作P′EAC于點E

1)求證:∠CBP=ABP;
2)若AB-BC=4,AC=8,求AE的長;
3)當∠ABC=60°,BC=2時,點NBC的中點,點M為邊BP上一個動點,連接MC,MN,求MC+MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在探究函數(shù)的圖象和性質(zhì)時,經(jīng)歷了以下探究過程:

1)列表如下:

寫出表中m、n的值:m n ;

2)描點并在圖中畫出函數(shù)的大致圖象;

3)根據(jù)函數(shù)圖象,完成以下問題:

①觀察函數(shù)的圖象,以下說法正確的有   (填寫正確的序號)

A.對稱軸是直線x1

B.函數(shù)的圖象有兩個最低點,其坐標分別是(﹣12)、(1,2);

C.當﹣1x1時,yx的增大而增大;

D.當函數(shù)的圖象向下平移3個單位時,圖象與x軸有三個公共點;

E.函數(shù)的圖象,可以看作是函數(shù)的圖象向右平移2個單位得到.

②結(jié)合圖象探究發(fā)現(xiàn),當m滿足   時,方程有四個解.

③設(shè)函數(shù)的圖象與其對稱軸相交于P點,當直線yn和函數(shù)圖象只有兩個交點時,且這兩個交點與點P所構(gòu)成的三角形是等腰直角三角形,則n的值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊器材公司銷售一種市場需求較大的新型通訊產(chǎn)品,已知每件產(chǎn)品的進價為40元,每年銷售該種產(chǎn)品的總開支(不含進價)為120萬元,在銷售過程中發(fā)現(xiàn),年銷售量(萬件)與銷售單價(元)之間存在著如圖所示的一次函數(shù)關(guān)系.

直接寫出關(guān)于的函數(shù)關(guān)系式為

市場管理部門規(guī)定,該產(chǎn)品銷售單價不得超過100元,該公司銷售該種產(chǎn)品當年獲利55萬元,求當年的銷售單價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點A1,2),B3,2),連接AB.若對于平面內(nèi)一點P,線段AB上都存在點Q,使得PQ≤2,則稱點P是線段AB影子

1)在點C01),D2),E4,5)中,線段AB影子

2)若點Mm,n)在直線y=-x+2上,且不是線段AB影子,求m的取值范圍.

3)若直線y=x+b上存在線段AB影子,求b的取值范圍以及影子構(gòu)成的區(qū)域面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,以BC為直徑的⊙OAB于點D,⊙O的切線DEAC于點E

1)求證:EAC中點;

2)若AB=10,BC=6,連接CD,OE,交點為F,求OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿角平分線BD所在直線翻折,頂點A恰好落在邊BC的中點E處,AE=BD,那么tanABD=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點E、H分別在AB、AC上,已知BC40cm,AD30cm.

1)求證:AEH∽△ABC

2)求這個正方形的邊長.

查看答案和解析>>

同步練習(xí)冊答案