【題目】拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.
(1)求該拋物線的解析式和頂點坐標(biāo);
(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.
①若點O關(guān)于直線QB的對稱點為點C,當(dāng)點C恰好在直線l上時,求點Q的坐標(biāo);
②若點O關(guān)于直線QB的對稱點為點D,當(dāng)線段AD的長最短時,求點Q的坐標(biāo)(直接寫出答案即可).
【答案】(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
【解析】
1)把0(0,0),A(4,4v3)的坐標(biāo)代入
y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.
(2)先求出直線OA的解析式,點B坐標(biāo),拋物線的對稱軸即可解決問題.
(3)①如圖1中,點O關(guān)于直線BQ的對稱點為點C,當(dāng)點C恰好在直線l上時,首先證明四邊形BOQC是菱形,設(shè)Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問題.
②如圖2中,由題意點D在以B為圓心5為半徑的OB上運動,當(dāng)A,D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.先求出D、H兩點坐標(biāo),再求出直線BH的解析式即可解決問題.
(1)把O(0,0),A(4,4)的坐標(biāo)代入y=﹣x2+bx+c,
得,
解得,
∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.
所以拋物線的頂點坐標(biāo)為(,);
(2)①由題意B(5,0),A(4,4),
∴直線OA的解析式為y=x,AB==7,
∵拋物線的對稱軸x=,
∴P(,).
如圖1中,點O關(guān)于直線BQ的對稱點為點C,當(dāng)點C恰好在直線l上時,
∵QC∥OB,
∴∠CQB=∠QBO=∠QBC,
∴CQ=BC=OB=5,
∴四邊形BOQC是平行四邊形,
∵BO=BC,
∴四邊形BOQC是菱形,
設(shè)Q(m,),
∴OQ=OB=5,
∴m2+()2=52,
∴m=±,
∴點Q坐標(biāo)為(﹣,)或(,);
②如圖2中,由題意點D在以B為圓心5為半徑的⊙B上運動,當(dāng)A、D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.
∵AB=7,BD=5,
∴AD=2,D(,),
∵OH=HD,
∴H(,),
∴直線BH的解析式為y=﹣x+,
當(dāng)y=時,x=0,
∴Q(0,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點A作AD∥x軸交拋物線于點D.
(1)求此拋物線的表達式;
(2)點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,求△EAD的面積;
(3)若點P是直線AB下方的拋物線上一動點,當(dāng)點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx(a≠0)過點A(,﹣3)和點B(3,0).過點A作直線AC∥x軸,交y軸于點C.
(1)求拋物線的解析式;
(2)在拋物線上取一點P,過點P作直線AC的垂線,垂足為D.連接OA,使得以A,D,P為頂點的三角形與△AOC相似,求出對應(yīng)點P的坐標(biāo);
(3)拋物線上是否存在點Q,使得S△AOC=S△AOQ?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:如圖1,由課本91頁例2畫函數(shù)y=﹣6x與y=﹣6x+5可知,直線y=﹣6x+5可以由直線y=﹣6x向上平移5個單位長度得到由此我們得到正確的結(jié)論一:在直線L1:y=K1x+b1與直線L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反過來,也成立.
材料二:如圖2,由課本92頁例3畫函數(shù)y=2x﹣1與y=﹣0.5x+1可知,利用所學(xué)知識一定能證出這兩條直線是互相垂直的.由此我們得到正確的結(jié)論二:在直線L1:y=k1x+b1 與L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反過來,也成立
應(yīng)用舉例
已知直線y=﹣x+5與直線y=kx+2互相垂直,則﹣k=﹣1.所以k=6
解決問題
(1)請寫出一條直線解析式______,使它與直線y=x﹣3平行.
(2)如圖3,點A坐標(biāo)為(﹣1,0),點P是直線y=﹣3x+2上一動點,當(dāng)點P運動到何位置時,線段PA的長度最?并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是( 。
A.5B.25C.10+5D.35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量校園內(nèi)一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)應(yīng)用實踐小組做了如下的探索:根據(jù)光的反射定律,利用一面鏡子和皮尺,設(shè)計如圖所示的測量方案:把鏡子放在離樹AB的樹根7.2m的點E處,然后觀測者沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=2.4m,觀測者目高CD=1.6m,則樹高AB約是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線,為圖形內(nèi)一點,連接,.
(1)如圖①,寫出,,之間的等量關(guān)系,并證明你的結(jié)論;
(2)如圖②,請直接寫出,,之間的關(guān)系式;
(3)你還能就本題作出什么新的猜想?請畫圖并寫出你的結(jié)論(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;
③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com