如圖,在Rt△ADC中,∠ADC=90°,以CD為直徑的⊙O交AC于點(diǎn)E,點(diǎn)G是AD的中點(diǎn). 求證:GE是⊙O的切線.
證明:連接OE,
∵CD是⊙O的直徑,
∴∠CED=90°,
∴∠AED=90°,
又G為AD的中點(diǎn),
∴EG=AD=DG,
∴∠GED=∠GDE,
∵OE=OD,
∴∠OED=∠ODE,
∴∠GED+∠OED=∠GDE+∠ODE,
即∠OEG=∠ODG,
∵∠ODG=90°,
∴∠OEG=90°,
∴GE為⊙O的切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•和平區(qū)二模)如圖,在Rt△ADC中,∠ADC=90°,以CD為直徑的半圓O交AC于點(diǎn)E,點(diǎn)G是AD的中點(diǎn).
(Ⅰ)GE與半圓O相切嗎?若相切,請(qǐng)給出證明;若不相切,請(qǐng)說明理由;
(Ⅱ)若EC=4,DC=6,求直角邊AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ADC中,∠ADC=90°,以CD為直徑的⊙O交AC于點(diǎn)E,點(diǎn)G是AD的中點(diǎn).
求證:GE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京宣武外國語實(shí)驗(yàn)學(xué)校九年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖,在Rt△ADC中,∠C=90°,∠ADC=60°,AC,點(diǎn)BCD延長(zhǎng)線上一點(diǎn),且BD=2AD.求AB的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ADC中,∠ADC=90°,以CD為直徑的⊙O交AC于點(diǎn)E,點(diǎn)G是AD的中點(diǎn).
求證:GE是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案