【題目】如圖,在等腰直角三角形MNC中.CN=MN= ,將△MNC繞點C順時針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點O.
(1)∠NCO的度數(shù)為;
(2)求證:△CAM為等邊三角形;
(3)連接AN,求線段AN的長.

【答案】
(1)15°
(2)證明:∵∠ACM=60°,CM=CA,

∴△CAM為等邊三角形


(3)解:連接AN并延長,交CM于D,

∵△MNC是等腰直角三角形,△ACM是等邊三角形,

∴NC=NM= ,CM=2,AC=AM=2,

在△ACN和△AMN中,

,

∴△ACN≌△AMN(SSS),

∴∠CAN=∠MAN,

∴AD⊥CM,CD= CM=1,

∴Rt△ACD中,AD= CD= ,

等腰Rt△MNC中,DN= CM=1,

∴AN=AD﹣ND= ﹣1.


【解析】(1)由旋轉(zhuǎn)可得∠ACM=60°,再根據(jù)等腰直角三角形MNC中,∠MCN=45°,運用角的和差關系進行計算即可得到∠NCO的度數(shù);(2)根據(jù)有一個角是60°的等腰三角形是等邊三角形進行證明即可;(3)根據(jù)△MNC是等腰直角三角形,△ACM是等邊三角形,判定△ACN≌△AMN,再根據(jù)Rt△ACD中,AD= CD= ,等腰Rt△MNC中,DN= CM=1,即可得到AN=AD﹣ND= ﹣1.
【考點精析】解答此題的關鍵在于理解等腰直角三角形的相關知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°,以及對等邊三角形的判定的理解,了解三個角都相等的三角形是等邊三角形;有一個角等于60°的等腰三角形是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);

(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC⊥CB,垂足為C點,AC=CB=8cm,點Q是AC的中點,動點P由B點出發(fā),沿射線BC方向勻速移動.點P的運動速度為2cm/s.設動點P運動的時間為ts.為方便說明,我們分別記三角形ABC面積為S,三角形PCQ的面積為S1,三角形PAQ的面積為S2,三角形ABP的面積為S3

(1)S3   cm2(用含t的代數(shù)式表示);

(2)當點P運動幾秒,S1S,說明理由;

(3)請你探索是否存在某一時刻,使得S1=S2=S3?若存在,求出t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,AB=AC,∠BAC=36°,將△ABC繞點A按逆時針旋轉(zhuǎn)角度ɑ(0°<ɑ<180°)得到△ADE,連接CE、BD,BDCE相交于點F。

(1)求證:BD=CE

(2)ɑ等于多少度時,四邊形AFDE是平行四邊形?并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1 48(- (-48) (-8)

2 12 0.5 2 (3)2 ];

3)先化簡,再求值:

已知m 3, n ,求3m2n 2mn2 2mn m2n mn] 3mn2 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的課余生活,陶冶學生的情操,促進學生全面發(fā)展,某中學七年級開展了學生社團活動,學校為了解學生參加情況,對部分學生進行了調(diào)查,制作出如下的統(tǒng)計圖:

請根據(jù)統(tǒng)計圖,完成以下問題:

(1)這次共調(diào)查了 名學生;在扇形統(tǒng)計圖中,表示書法類所在扇形的圓心角是 度.

(2)請把統(tǒng)計圖1 補充完整.

(3)若七年級共有學生1100 名,請估算有多少名學生參加文學類社團.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)﹣0.5﹣(﹣3 )+2.75﹣(+7

(2)(+×(﹣12)

(3)(﹣2)3÷ ×2

(4)﹣12×[2﹣(﹣4)2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,轉(zhuǎn)盤A、B中各個扇形的面積相等,且分別標有數(shù)字.小明和小麗玩轉(zhuǎn)轉(zhuǎn)盤游戲,規(guī)則如下:分別轉(zhuǎn)動轉(zhuǎn)盤A、B,當轉(zhuǎn)盤停止轉(zhuǎn)動時,將兩個指針所指扇形內(nèi)的數(shù)字相乘(若指針停在等分線上,那么重轉(zhuǎn)一次).
(1)用列表法(或樹狀圖)分別求出數(shù)字之積為3的倍數(shù)及數(shù)字之積為5的倍數(shù)的概率;
(2)小亮和小麗想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小亮得3分;數(shù)字之積為5的倍數(shù)時,小麗得4分,這個游戲?qū)﹄p方公平嗎?請說明理由;認為不公平的,請你修改得分規(guī)定,使游戲雙方公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算或化簡:
(1)計算:21+ cos30°+|﹣5|﹣(π﹣2017)0
(2)化簡:(x﹣5+ )÷

查看答案和解析>>

同步練習冊答案