如圖,DE是△ABC的中位線,M、N分別是BD、CE的中點(diǎn),MN=6,則BC=   
【答案】分析:利用三角形的中位線求得DE與BC的關(guān)系,利用梯形的中位線的性質(zhì)求得BC的長(zhǎng)即可.
解答:解:∵DE是△ABC的中位線,
∴DE=BC,DE∥BC
∵M(jìn)、N分別是BD、CE的中點(diǎn),
∴由梯形的中位線定理得:MN=(DE+BC)=×BC=6,
∴BC=8.
故答案為:8.
點(diǎn)評(píng):本題考查的知識(shí)比較全面,需要用到梯形和三角形中位線定理以及平行四邊形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,DE是△ABC的中位線,若AD=4,AE=5,BC=12,則△ADE的周長(zhǎng)為(  )
A、7.5B、15C、30D、24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,若BC=6,則DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,則△ADE和四邊形BCED的面積之比為(  )
A、1:2B、1:3C、1:4D、以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,F(xiàn)G是梯形BCED的中位線,若BC=16cm,則FG的長(zhǎng)是( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,DE是△ABC的中位線,點(diǎn)P是DE的中點(diǎn),CP的延長(zhǎng)線交AB于點(diǎn)Q,那么S△DPQ:S△ABC=
1:24

查看答案和解析>>

同步練習(xí)冊(cè)答案