【題目】如圖,已知直線分別交軸、軸于點(diǎn)、,拋物線過,兩點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn),交拋物線于點(diǎn).
(1)若拋物線的頂點(diǎn)的坐標(biāo)為,其對稱軸交于點(diǎn),
①求拋物線的解析式;
②是否存在點(diǎn),使四邊形為菱形?并說明理由;
(2)當(dāng)點(diǎn)的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以、、為頂點(diǎn)的三角形與相似?若存在,求出滿足條件的拋物線的解析式:若不存在,請說明理由.
【答案】(1)①或?qū)懗?/span>y②不存在.(2)存在.
滿足條件的拋物線的解析式為或.
【解析】
(1)①利用頂點(diǎn)M將拋物線設(shè)為頂點(diǎn)式,代入點(diǎn)A的坐標(biāo)即可求得;
(1)②根據(jù)PM∥MN可知,PD=MN時(shí),四邊形MNPD是平行四邊形.在求m值來確定菱形;
(2)先求出PB的長,然后設(shè)拋物線為,代入A的坐標(biāo)可得出a與b的關(guān)系.在利用∠DPB=∠OBA討論可求得
(1)①∵拋物線的頂點(diǎn)的坐標(biāo)為
∴設(shè)
拋物線過點(diǎn)A,根據(jù)一次函數(shù)可得A(2,0)代入解析式得
a=-2
∴拋物線解析式為
②不存在.
理由如下:(如圖)
,
設(shè)點(diǎn)坐標(biāo)為(m,-2m+4),則,
∴PD=-(-2m+4)=,
∵,
當(dāng)時(shí),四邊形為平行四邊形,即,解得(舍去),,此時(shí)點(diǎn)坐標(biāo)為,
∵,
∴,∴平行四邊形不為菱形,
∴不存在點(diǎn),使四邊形為菱形;
(2)存在.
如圖,,,則,
當(dāng)時(shí),y=-2x+4=2,則,
∴PB=,
設(shè)拋物線的解析式,
把代入得4a+2b+4=0,解得b=-2a-2,
∴拋物線的解析式為,
當(dāng)時(shí),,則D(1,2-a),
∴PD=-a,
∵,∴∠DPB=∠OBA,
∴當(dāng)時(shí),,即,解得,此時(shí)拋物線解析式為;
當(dāng)時(shí),,即,解得,此時(shí)拋物線解析式為y=;
綜上所述,滿足條件的拋物線的解析式為或y=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前我市“校園手機(jī)”現(xiàn)象越來越受到社會(huì)關(guān)注,針對這種現(xiàn)象,我市某中學(xué)九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長對“中學(xué)生帶手機(jī)”現(xiàn)象的看法.統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)這次調(diào)查的家長總數(shù)為__________,家長表示“不贊同”的人數(shù)為________________;
(2)從這次接受調(diào)查的家長中隨機(jī)抽查一個(gè),恰好是“贊同”的家長的概率是____________;
(3)求圖②中表示家長“無所謂”的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),與軸交于兩點(diǎn)
求拋物線的解析式;
如圖1,直線交拋物線于兩點(diǎn),為拋物線上之間的動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn)于點(diǎn),求的最大值;
如圖2,平移拋物線的頂點(diǎn)到原點(diǎn)得拋物線,直線交拋物線于、兩點(diǎn),在拋物線上存在一個(gè)定點(diǎn),使,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.
(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過A、B、D三點(diǎn)(保留作圖痕跡);
(2)點(diǎn)C是否在⊙O上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請寫出此時(shí)點(diǎn)N的坐標(biāo);
(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)是上一點(diǎn),點(diǎn)是的中點(diǎn),過點(diǎn)作的切線,與、的延長線分別交于點(diǎn)、,連接.
(1)求證:.
(2)填空:
①已知,當(dāng)_________時(shí),.
②連接、、.當(dāng)的度數(shù)為_________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別為AB,AC邊上一點(diǎn),且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,則四邊形CEDB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,AB=2.點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC邊上的任意一點(diǎn)(不與B、C重合),△EBF沿EF翻折,點(diǎn)B落在B'處,當(dāng)DB'的長度最小時(shí),BF的長度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,“中小學(xué)生每天在校體育鍛煉時(shí)間不小于1小時(shí)”,某地區(qū)就“每天在校體育鍛煉時(shí)間”的問題隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作如下統(tǒng)計(jì)圖(不完整).其中分組情況:A組:時(shí)間小于0.5小時(shí);B組:時(shí)間大于等于0.5小時(shí)且小于1小時(shí);C組:時(shí)間大于等于1小時(shí)且小于1.5小時(shí);D組:時(shí)間大于等于1.5小時(shí).
根據(jù)以上信息,回答下列問題:
(1)A組的人數(shù)是 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組 ;
(3)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)該地區(qū)25 000名中學(xué)生中,達(dá)到國家規(guī)定的每天在校體育鍛煉時(shí)間的人數(shù)約有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com