【題目】如圖,二次函數(shù)的圖象與x軸交于點和點B,與y軸交于點

求該二次函數(shù)的表達式;

過點A的直線且交拋物線于另一點D,求直線AD的函數(shù)表達式;

的條件下,在x軸上是否存在一點P,使得以BC、P為頂點的三角形與相似?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】(1);(2);(3)

【解析】

(1)把,代入即可得到結(jié)果;

(2)在中,令,則,得到,由已知條件得直線的解析式為,由于,設(shè)直線的解析式為,即可得到結(jié)論;

(3)由,得到,只要當時,,求出,,代入比例式解得的長度,即可得到.

次函數(shù)的圖象經(jīng)過點和點,

解得,

二次函數(shù)的表達式為

中,令,則,

解得:,

,

由已知條件得直線BC的解析式為,

,

設(shè)直線AD的解析式為,

,

直線AD的解析式為

,

,

,點P在點B得到左側(cè),

只可能

時,

,,,

,,

解得,

,,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,邊長為2的等邊三角形ABC中,D點在邊BC上運動(不與BC重合),點E在邊AB的延長線上,點F在邊AC的延長線上,AD=DE=DF.

(1)若∠AED=30°,則∠ADB=_______°.

(2)求證:△BED≌△CDF

(3)DBC邊上從BC的運動過程中,△BED周長變化規(guī)律為( )

A.不變 B.一直變小 C.先變大后變小 D.先變小后變大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;

(2)設(shè)方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一水果店,從批發(fā)市場按4千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲元.

設(shè)x天后每千克蘋果的價格為p元,寫出px的函數(shù)關(guān)系式;

若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出yx的函數(shù)關(guān)系式;

該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點,且此拋物線的頂點坐標為

求此拋物線的解析式;

設(shè)點D為已知拋物線對稱軸上的任意一點,當面積相等時,求點D的坐標;

P在線段AM上,當PCy軸垂直時,過點Px軸的垂線,垂足為E,將沿直線CE翻折,使點P的對應點P、E、C處在同一平面內(nèi),請求出點坐標,并判斷點是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線經(jīng)過點A-3,4).

1)求b的值;

2過點A軸的平行線交拋物線于另一點B,在直線AB上任取一點P,作點A關(guān)于直線OP的對稱點C

①當點C恰巧落在軸時,求直線OP的表達式;

②連結(jié)BC,求BC的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個三角形的兩條邊長為1cm2cm,一個內(nèi)角為45°

1)請你利用如圖45°角,畫出一個滿足題設(shè)條件的三角形.

2)你是否還能畫出既滿足題設(shè)條件,又與(1)中所畫的不全等的三角形?若能,請用尺規(guī)作圖畫出,若不能,請說明理由.

3)如果將題設(shè)條件改為一個三角形的兩條邊長為3cm4cm,一個內(nèi)角為45°”,畫出滿足這一條件的,且彼此不全等的所有三角形.(要求在圖中標記3cm4cm的邊長)

查看答案和解析>>

同步練習冊答案