【題目】如圖,已知ACBC,CDAB,DEAC,1與∠2互補(bǔ),判斷HFAB是否垂直,并說明理由(填空)

解:垂直.理由如下:

DEAC,ACBC,

∴∠AED=ACB=90°( 垂直的意義  ).

DEBC(   

∴∠1=DCB(   

∵∠1與∠2互補(bǔ)(已知).

∴∠DCB與∠2互補(bǔ)

同旁內(nèi)角互補(bǔ),兩直線平行

∴∠BFH=CDB(    

CDAB,

∴∠CDB=90°.

∴∠BFH=    ).

HFAB.

【答案】垂直.理由見解析.

【解析】根據(jù)圖形,由已知條件寫出根據(jù)平行線的判定或性質(zhì),或根據(jù)性質(zhì)或判定寫出關(guān)系或度數(shù)即可.

DEACACBC,

∴∠AED=ACB=90°(.

DEBC 同位角相等,兩直線平行

∴∠1=DCB兩直線平行,內(nèi)錯(cuò)角相等

∵∠1與∠2互補(bǔ)(已知).

∴∠DCB與∠2互補(bǔ),

FHCD

∴∠BFH=CDB 兩直線平行,同位角相等

CDAB

∴∠CDB=90°

∴∠BFH= 90° 等量代換 ).

HFAB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從友誼體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同、每個(gè)籃球的價(jià)格相同),若購買3個(gè)籃球和2個(gè)足球共需420元;購買2個(gè)籃球和4個(gè)足球共需440元.
(1)購買一個(gè)籃球、一個(gè)足球各需多少元?
(2)根據(jù)該中學(xué)的實(shí)際情況,需要從該體育用品商店一次性購買足球和籃球共20個(gè).要求購買籃球數(shù)不少于足球數(shù)的2倍,總費(fèi)用不超過1840元,那么這所中學(xué)有哪幾種購買方案?哪種方案所需費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,Pl上一動(dòng)點(diǎn).點(diǎn)M,N分別為PAPB的中點(diǎn),對(duì)于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MN,AB之間的距離;

⑤∠APB的大。

其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為a的正方形中挖去一個(gè)邊長為b的小正方形(ab)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證( )

A. a+b2=a2+2ab+b2

B. a﹣b2=a2﹣2ab+b2

C. a2﹣b2=a+b)(a﹣b

D. a+2b)(a﹣b=a2+ab﹣2b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)正方形邊長分別為a、b

1)求陰影部分的面積.

2)如果a+b=17ab=60,求陰影部分的面積.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/17/1904284875390976/1906414662729728/STEM/433f25b861984b60a78ae031a98667fa.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有5個(gè)質(zhì)地、大小完全相同的小球上分別標(biāo)有數(shù)字-1,-2,1,2,3.先將標(biāo)有數(shù)字-2,1,3的小球放在第一個(gè)不透明的盒子里,再將其余小球放在第二個(gè)不透明的盒子里.現(xiàn)分別從兩個(gè)盒子里各隨即取出一個(gè)小球.
(1)請(qǐng)利用列表或畫樹狀圖的方法表示取出的兩個(gè)小球上數(shù)字之和所有可能的結(jié)果;
(2)求取出的兩個(gè)小球上的數(shù)字之和等于0的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)EAD的延長線上,且PA=PE,PECDF.

(1)證明:PC=PE;

(2)求∠CPE的度數(shù)

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120度時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國際合作高峰壇在北京行,本屆壇期間,中國同30多個(gè)國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價(jià)各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC、BD是它的對(duì)角線,∠ABC=∠ADC=90°,∠BCD是銳角.

(1)寫出這個(gè)四邊形的一條性質(zhì)并證明你的結(jié)論.
(2)若BD=BC,證明:
(3)①若AB=BC=4,AD+DC=6,求 的值.
②若BD=CD,AB=6,BC=8,求sin∠BCD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案