已知拋物線的頂點(diǎn)為(1,-1),且過點(diǎn)(2,1),求這個函數(shù)的表達(dá)式.
【答案】分析:因為拋物線的頂點(diǎn)為(1,-1),可設(shè)拋物線的解析式為y=a(x-1)2-1,把(2,1)代入解析式可求a,從而確定這個函數(shù)的表達(dá)式.
解答:解:設(shè)拋物線的解析式為y=a(x-1)2-1,
把點(diǎn)(2,1)代入解析式得:a-1=1,
解得a=2,
∴這個函數(shù)的表達(dá)式為y=2(x-1)2-1.
點(diǎn)評:此題考查了用待定系數(shù)法求函數(shù)解析式的方法,若題目中給出了二次函數(shù)的頂點(diǎn)式,則設(shè)頂點(diǎn)式解題簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(2,1),且經(jīng)過原點(diǎn)O,與x軸的另一個交點(diǎn)為B.
(1)求拋物線的解析式;
(2)若點(diǎn)C在拋物線的對稱軸上,點(diǎn)D在拋物線上,且以O(shè)、C、D、B四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求D點(diǎn)的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點(diǎn)P,使得△OBP與△OAB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線的頂點(diǎn)為M(5,6),且經(jīng)過點(diǎn)C(-1,0).
(1)求拋物線的解析式;
(2)設(shè)拋物線與y軸交于點(diǎn)A,過A作AB∥x軸,交拋物線于另一點(diǎn)B,則拋物線上存在點(diǎn)P,使△ABP的面積等于△ABO的面積,請求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)將拋物線向右平移,使拋物線經(jīng)過點(diǎn)(5,0),請直接答出曲線段CM(拋精英家教網(wǎng)物線圖象的一部分,如圖中的粗線所示)在平移過程中所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線上的一動點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線上且與點(diǎn)A不重合,直線PB與拋物線的另一個交點(diǎn)為Q,過點(diǎn)P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動.(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
③延長PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)為(-1,-2),且通過(1,10),則這條拋物線的表達(dá)式為( 。

查看答案和解析>>

同步練習(xí)冊答案