【題目】某中學(xué)在實施快樂大課間之前組織過“我最喜歡的球類”的調(diào)查活動,每個學(xué)生僅選擇一項,通過對學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.
(1)求出被調(diào)查的學(xué)生人數(shù);
(2)把折線統(tǒng)計圖補(bǔ)充完整;
(3)小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時只有一副空球桌,他們只能選兩人打第一場.如果確定小亮打第一場,其余三人用“手心、手背”的方法確定誰獲勝誰打第一場若三人中有一人出的與其余兩人不同則獲勝;若三人出的都相同則平局.已知大剛出手心,請用樹狀圖分析大剛獲勝的概率是多少?
【答案】
(1)解:被調(diào)查的學(xué)生數(shù)為:40÷20%=200(人)
(2)解:醫(yī)生的人數(shù)是:200×15%=30(人);
教師的人數(shù)是:200﹣30﹣40﹣20﹣70=40(人),
補(bǔ)圖如下:
(3)解:如圖:
由樹狀圖可知:三人伸手的情況有(手心、手心、手心),(手心,手心,手背),(手心,手背,手心),(手心,手背,手背)4種,每種情況出現(xiàn)的可能性都是相同的,其中大剛伸手心與其他兩人不同的情況有1種,所以P大剛= ,
所以大剛獲勝的概率為
【解析】(1)根據(jù)乒乓球人數(shù)和所占的百分比即可求出總?cè)藬?shù);(2)用總?cè)藬?shù)乘以足球所占的百分比求出足球的人數(shù),再用總?cè)藬?shù)減去籃球、足球、乒乓球和其他的人數(shù),求出羽毛球的人數(shù),從而補(bǔ)全折線統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與大剛獲勝的情況數(shù),再利用概率公式即可求得答案.
【考點精析】根據(jù)題目的已知條件,利用扇形統(tǒng)計圖和折線統(tǒng)計圖的相關(guān)知識可以得到問題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,我們把橫、縱坐標(biāo)都為整數(shù)的點稱為整點,記定點都是整點的三角形為整點三角形.如圖,已知整點O(0,0),A(2,4),請在所給網(wǎng)格區(qū)域(含邊界)上按要求畫圖.
(1)在圖1中畫一個整點三角形OAB,其中點B在第一象限,且點B的橫、縱坐標(biāo)之和等于點A的橫坐標(biāo);
(2)在圖2中畫一個整點三角形OAC,其中點C的坐標(biāo)為(3t,t),且點C的橫、縱坐標(biāo)之和是點A的縱坐標(biāo)的2倍.請直接寫出△OAC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是⊙O上一點,⊙O的半徑為 ,D、E分別是弦AC、BC上一動點,且OD=OE= ,則AB的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=ADAB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個動點,F是AB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的( ).
A. 線段EC B. 線段AE C. 線段EF D. 線段BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程mx2-3(m-1)x+2m-3=0(m>3).
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩個實數(shù)根分別為x1,x2,且x1<x2.
①求方程的兩個實數(shù)根x1,x2(用含m的代數(shù)式表示);
②若mx1<8-4x2,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)解不等式組 ,并寫出不等式組的整數(shù)解.
(2)化簡分式:( ﹣ )÷ ,再從﹣2<x<3的范圍內(nèi)選取一個你最喜歡的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側(cè),且PE=1,連結(jié)CE.P從點A出發(fā),沿AB方向運(yùn)動,當(dāng)E到達(dá)點B時,P停止運(yùn)動.在整個運(yùn)動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先減小后增大
D.先增大后減小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com