【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,∠A=120°,則EF=cm.

【答案】
【解析】解:
連接BD、AC,
∵四邊形ABCD是菱形,
∴AC⊥BD,AC平分∠BAD,
∵∠BAD=120°,
∴∠BAC=60°,
∴∠ABO=90°﹣60°=30°,
∵∠AOB=90°,
∴AO= AB= ×2=1,
由勾股定理得:BO=DO=
∵A沿EF折疊與O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴EF為△ABD的中位線,
∴EF= BD= + )=
故答案為:
根據(jù)菱形性質(zhì)得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根據(jù)折疊得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF為△ABD的中位線,根據(jù)三角形中位線定理求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0;②a+b+c>0;③a>b;④b2﹣4ac<0;其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠CAD和∠CBD的平分線相交于點(diǎn)P.設(shè)∠CAD、CBD、C、D的度數(shù)依次為a、b、c、d,用僅含其中2個(gè)字母的代數(shù)式來表示∠P的度數(shù):_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀旅娴姆匠?/span>
①3x2+x﹣1=0
②(3x﹣2)2=4(3﹣x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司銷售部為了定制下個(gè)月的銷售計(jì)劃,對20位銷售人員本月的銷售量(單位:臺(tái))進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的中位數(shù)、眾數(shù)分別是(  )

A. 20臺(tái),14臺(tái) B. 19臺(tái),20臺(tái) C. 20臺(tái),20臺(tái) D. 25臺(tái),20臺(tái)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長城公司為希望小學(xué)捐贈(zèng)甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號(hào),乙品牌有D、E兩種型號(hào),現(xiàn)要從甲、乙兩種品牌的器材中各選購一種型號(hào)進(jìn)行捐贈(zèng).
(1)寫出所有的選購方案(用列表法或樹狀圖);
(2)如果在上述選購方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為節(jié)約水資源,制定了新的居民用水收費(fèi)標(biāo)準(zhǔn).按照新標(biāo)準(zhǔn),用戶每月繳納的水費(fèi)y(元)與每月用水量x(m3)之間的關(guān)系如圖所示.

(1)求y關(guān)于x的函數(shù)解析式;

(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費(fèi)79.8元,則該用戶二、三月份的用水量各是多少m3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船在B處測得燈塔A在北偏東60°的方向,另一艘貨輪在C處測得燈塔A在北偏東40°的方向,那么在燈塔A處觀看BC時(shí)的視角∠BAC是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

同步練習(xí)冊答案