【題目】函數(shù)學(xué)習(xí)中,自變量取值范圍及相應(yīng)的函數(shù)值范圍問題是大家關(guān)注的重點(diǎn)之一,請(qǐng)解決下面的問題.
(1)分別求出當(dāng)2≤x≤4時(shí),三個(gè)函數(shù):y=2x+1,y= ,y=2(x-1)2+1的最大值和最小值.
(2)對(duì)于二次函數(shù)y=2(x-m)2+m-2,當(dāng)2≤x≤4時(shí)有最小值為1,求m的值.
【答案】(1)見解析;(2)m=1或m=3.
【解析】
(1)根據(jù)函數(shù)值在取值范圍內(nèi)的增減性,可求函數(shù)的最大值和最小值;
(2)分m<2、2≤m≤4和m>4三種情況考慮,根據(jù)二次函數(shù)的性質(zhì)結(jié)合當(dāng)2≤x≤4時(shí)有最小值為1即可得出關(guān)于m的一元二次方程(一元一次方程),解之即可得出結(jié)論.
解:(1)∵y=2x+1中k=2>0,
∴y隨x的增大而增大,
∴當(dāng)x=2時(shí),y最小=5;當(dāng)x=4時(shí),y最大=9.
∵y=中k=2>0,
∴在2≤x≤4中,y隨x的增大而減小,
∴當(dāng)x=2時(shí),y最大=1;當(dāng)x=4時(shí),y最小=.
∵y=2(x-1)2+1中a=2>0,且拋物線的對(duì)稱軸為x=1,
∴在2≤x≤4中,y隨x的增大而增大,
∴當(dāng)x=2時(shí),y最小=3;當(dāng)x=4時(shí),y最大=19.
(2))①當(dāng)m<2時(shí),當(dāng)x=2時(shí),y最小值為1,代入解析式,
得2(2-m)2+m-2=1,
解得:m1=1,m2=(舍去);
②當(dāng)2≤m≤4時(shí),有m-2=1,
解得:m=3;
③當(dāng)m>4時(shí),當(dāng)x=4時(shí),y最小值為1,代入解析式,
得2(4-m)2+m-2=1,
整理得:2m2-15m+29=0.
∵△=(-15)2-4×2×29=-7,無解.
∴m的值為1或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備進(jìn)一批小工藝品,每件的成本是40元,經(jīng)市場(chǎng)調(diào)查,銷售單價(jià)為50元,每天銷售量為100個(gè),若銷售單價(jià)每增加1元,銷售量將減少10個(gè).
(1)求每天銷售小工藝品的利潤(rùn)y(元)和銷售單價(jià)x(元)之間的函數(shù)解析式;
(2)商店若準(zhǔn)備每天銷售小工藝品獲利960元,則每天銷售多少個(gè)?銷售單價(jià)定為多少元?
(3)直接寫出銷售單價(jià)為多少元時(shí),每天銷售小工藝品的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個(gè)頂點(diǎn)分別在邊AB、AC上.
(1)若這個(gè)矩形是正方形,那么邊長(zhǎng)是多少?
(2)當(dāng)PQ的值為多少時(shí),這個(gè)矩形面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8×8正方形網(wǎng)格中,點(diǎn)A、B、C和O都為格點(diǎn).
(1)利用位似作圖的方法,以點(diǎn)O為位似中心,可將格點(diǎn)三角形ABC擴(kuò)大為原來的2倍.請(qǐng)你在網(wǎng)格中完成以上的作圖(點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別用A′、B′、C′表示);
(2)當(dāng)以點(diǎn)O為原點(diǎn)建立平面坐標(biāo)系后,點(diǎn)C的坐標(biāo)為(﹣1,2),則A′、B′、C′三點(diǎn)的坐標(biāo)分別為:A′: B′: C′: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x、y是實(shí)數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯(cuò)誤的是
A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50次
D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com