【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了 h;
(2)求線段DE對應(yīng)的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長時(shí)間追上貨車.
【答案】解:(1)0.5。
(2)設(shè)線段DE對應(yīng)的函數(shù)解析式為y=kx+b(2.5≤x≤4.5),
∵D點(diǎn)坐標(biāo)為(2.5,80),E點(diǎn)坐標(biāo)為(4.5,300),
∴代入y=kx+b,得: ,解得:。
∴線段DE對應(yīng)的函數(shù)解析式為:y=110x-195(2.5≤x≤4.5)。
(3)設(shè)線段OA對應(yīng)的函數(shù)解析式為y=mx(0≤x≤5),
∵A點(diǎn)坐標(biāo)為(5,300),代入解析式y(tǒng)=mx得,300=5m,解得:m=60。
∴線段OA對應(yīng)的函數(shù)解析式為y=60x(0≤x≤5)
由60x=110x-195,解得:x=3.9。
答:轎車從甲地出發(fā)后經(jīng)過3.9小時(shí)追上貨車。
【解析】一次函數(shù)的應(yīng)用,待定系數(shù)法,直線上點(diǎn)的坐標(biāo)與方程的關(guān)系。
(1)利用圖象得出CD這段時(shí)間為2.5-2=0.5,得出答案即可。
(2)由D點(diǎn)坐標(biāo)(2.5,80),E點(diǎn)坐標(biāo)(4.5,300),用待定系數(shù)法求出線段DE對應(yīng)的函數(shù)
解析式。
(3)用待定系數(shù)法求出OA的解析式,列60x=110x-195時(shí),求解即為轎車追上貨車的時(shí)間。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+4與反比例函數(shù)y= 的圖象相交于A(﹣3,a)和B兩點(diǎn)
(1)求k的值;
(2)直線y=m(m>0)與直線AB相交于點(diǎn)M,與反比例函數(shù)的圖象相交于點(diǎn)N.若MN=4,求m的值;
(3)直接寫出不等式 >x的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩地相距4千米,上午8:00,甲從A地出發(fā)步行到B地,8:20乙從B地出發(fā)騎自行車到A地,甲、乙兩人離A地的距離(千米)與甲所用的時(shí)間(分)之間的關(guān)系如圖所示.由圖中的信息知,乙到達(dá)A地的時(shí)刻為( )
A. 8:30B. 8:35C. 8:40D. 8:45
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)當(dāng)拋物線y=kx2+(2k+1)x+2圖象與x軸兩個交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù)時(shí),若P(a,y1),Q(1,y2)是此拋物線上的兩點(diǎn),且y1>y2 , 請結(jié)合函數(shù)圖象確定實(shí)數(shù)a的取值范圍;
(3)已知拋物線y=kx2+(2k+1)x+2恒過定點(diǎn),求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+3(a<0)與x軸交于A(3,0)、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸是直線x=1,D為拋物線的頂點(diǎn),點(diǎn)E在y軸C點(diǎn)的上方,且CE= .
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)求證:直線DE是△ACD外接圓的切線;
(3)在直線AC上方的拋物線上找一點(diǎn)P,使S△ACP= S△ACD , 求點(diǎn)P的坐標(biāo);
(4)在坐標(biāo)軸上找一點(diǎn)M,使以點(diǎn)B,C,M為頂點(diǎn)的三角形與△ACD相似,直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,∠DAC=30°,點(diǎn)P、E分別在AC、AD上,則PE+PD的最小值是( )
A.2
B.2
C.4
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一條東西走向的河流,在河流對岸有一點(diǎn)A,小明在岸邊點(diǎn)B處測得點(diǎn)A在點(diǎn)B的北偏東30°方向上,小明沿河岸向東走80m后到達(dá)點(diǎn)C,測得點(diǎn)A在點(diǎn)C的北偏西60°方向上,則點(diǎn)A到河岸BC的距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com