【題目】如圖:已知△ABC是等邊三角形,D、E、F分別是AB、AC、BC邊的中點(diǎn),M是直線BC上的任意一點(diǎn),在射線EF上截取EN,使EN=FM,連接DM、MN、DN.
(1)如圖①,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請你按已知要求補(bǔ)全圖形,并判斷△DMN是怎樣的特殊三角形(不要求證明);
(2)請借助圖②解答:當(dāng)點(diǎn)M在線段BF上(與點(diǎn)B、F不重合),其它條件不變時(shí),(1)中的結(jié)論是否依然成立?若成立,請證明;若不成立,請說明理由;
(3)請借助圖③解答:當(dāng)點(diǎn)M在射線FC上(與點(diǎn)F不重合),其它條件不變時(shí),(1)中的結(jié)論是否仍然成立?畫出圖形,不要求證明.
【答案】(1)△DMN是等邊三角形;(2)△DMN仍是等邊三角形;(3)△DMN不是等邊三角形.
【解析】
(1)連接DF,根據(jù)等邊三角形的性質(zhì)與三角形中位線平行于第三邊并且等于第三邊的一半的性質(zhì)可以證明DF=BD=EF=BF,然后證明BM=FN,∠MBD=∠NFD=120°,從而證明△BDM與△FDN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得MD=DN,對(duì)應(yīng)角相等可得∠MDB=∠NDF,然后證明∠MDN=∠BDF=60°,所以△DMN是等邊三角形;
(2)連接DF,根據(jù)等邊三角形的性質(zhì)與三角形中位線平行于第三邊并且等于第三邊的一半的性質(zhì)可以證明DF=BD=EF=BF,然后證明BM=FN,∠MBD=∠NFD=60°,從而證明△BDM與△FDN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得MD=DN,對(duì)應(yīng)角相等可得∠MDB=∠NDF,然后證明∠MDN=∠BDF=60°,所以△DMN是等邊三角形;(3)沿用前兩問的思路,顯然不能證明△CDM與△FDN全等,所以△DMN不是等邊三角形.
(1)如圖①,△DMN是等邊三角形.
(2)如圖②,當(dāng)M在線段BF上(與點(diǎn)B、F不重合)時(shí),△DMN仍是等邊三角形
證明:連接DF,
∵△ABC是等邊三角形,∴∠ABC=60°,AB=AC=BC.
∵D、E、F分別是△ABC三邊的中點(diǎn),∴DF=BD=EF=BF
∴∠BDF=∠A=∠DFE=60°,∴∠ABC=∠DFE,
∵FM=EN,∴BM=NF,∴△BDM≌△FDN,
∴∠BDM=∠FDN,MD=ND,
∴∠BDM+∠MDF=∠FDN+∠MDF=∠MDN=60°,
△DMN是等邊三角形;
(3)如圖③或圖④,當(dāng)點(diǎn)M在射線FC上(與點(diǎn)F不重合)時(shí),(1)中的結(jié)論不成立,
即△DMN不是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC , ∠B=30°,∠C=60°,E、F、M、N分別為AB、CD、BC、DA的中點(diǎn),若BC=7,MN=3,則EF為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=70°∠B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一點(diǎn),E在BC的延長線上,且CE=CD,試猜想BD和AE的關(guān)系,并說明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點(diǎn),DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=( 。
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D,E分別是AC,AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個(gè)條件中,哪兩個(gè)條件可判定△ABC是等腰三角形(用序號(hào)寫出一種情形):_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com