【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.
【答案】
【解析】
根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進(jìn)而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進(jìn)而求出即可.
解:如圖,連接BD.
∵四邊形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等邊三角形,
∵AB=2,
∴△ABD的高為,
∵扇形BEF的半徑為2,圓心角為60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,
在△ABG和△DBH中,,
∴△ABG≌△DBH(ASA),
∴四邊形GBHD的面積等于△ABD的面積,
∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=.
故答案是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于A點(diǎn),與y軸交于B點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿AO方向向點(diǎn)O勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為().
(1)寫出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)的面積為S,試求出S與t之間的函數(shù)關(guān)系式,并求出當(dāng)t為何值時(shí),的面積最大;
(3)當(dāng)t為何值時(shí),以點(diǎn)A,P,Q為頂點(diǎn)的三角形與相似?并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形中,,是上一點(diǎn),連接交于點(diǎn),過點(diǎn)作交于點(diǎn).若,,則的長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB中,∠AOB=90°,∠ABO=30°,頂點(diǎn)A在反比例函y=(x>0)上運(yùn)動(dòng),此時(shí)頂點(diǎn)B也在反比例函數(shù)y=上運(yùn)動(dòng),則m的值為( )
A.-9B.-12C.-15D.-18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)分別為A(0,1),B(-1,0),C(0,-1),D(1,0).對(duì)于圖形M,給出如下定義:P為圖形M上任意一點(diǎn),Q為正方形ABCD邊上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最大值,那么稱這個(gè)最大值為圖形M的“正方距”,記作d(M).
(1)已知點(diǎn)E(0,4),
①直接寫出d(點(diǎn)E)的值;
②直線y=kx+4(k≠0)與x軸交于點(diǎn)F,當(dāng)d(線段EF)取最小值時(shí),求k的取值范圍;
(2)⊙T的圓心為T(7,t),半徑為1.若d(⊙T)<11,請(qǐng)直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將三角板放在正方形上,使三角板的直角頂點(diǎn)與正方形的頂點(diǎn)重合,三角板的一邊交于點(diǎn).另一邊交的延長線于點(diǎn).
(1)觀察猜想:線段與線段的數(shù)量關(guān)系是_____;
(2)探究證明:如圖2,移動(dòng)三角板,使頂點(diǎn)始終在正方形的對(duì)角線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明:若不成立.請(qǐng)說明理由:
(3)拓展延伸:如圖3,將(2)中的“正方形”改為“矩形”,且使三角板的一邊經(jīng)過點(diǎn),其他條件不變,若、,請(qǐng)?zhí)骄烤段與線段之間存在怎樣的數(shù)量關(guān)系?(用含、的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為全面貫徹黨的教育方針,堅(jiān)持“健康第一”的教育理念,促進(jìn)學(xué)生健康成長,提高體質(zhì)健康水平,成都市調(diào)整體育中考實(shí)施方案:分值增加至60,男1000米(女800米)必考,足球、籃球、排球“三選一”…,從2019年秋季新入學(xué)的七年級(jí)起開始實(shí)施.某中學(xué)為了解七年級(jí)學(xué)生對(duì)三大球類運(yùn)動(dòng)的喜愛情況,從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)求參與調(diào)查的學(xué)生中,喜愛排球運(yùn)動(dòng)的學(xué)生人數(shù),并補(bǔ)全條形圖;
(2)若該中學(xué)七年級(jí)共有400名學(xué)生,請(qǐng)你估計(jì)該中學(xué)七年級(jí)學(xué)生中喜愛籃球運(yùn)動(dòng)的學(xué)生有多少名?
(3)若從喜愛足球運(yùn)動(dòng)的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運(yùn)動(dòng)員的重點(diǎn)培養(yǎng)對(duì)象,請(qǐng)用列表法或畫樹狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于A(1,a),B兩點(diǎn),點(diǎn)C在第四象限,CA∥y軸,∠ABC=90°
(1)求反比例函數(shù)的解析式及點(diǎn)B的坐標(biāo);
(2)求tanC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(3,1)與點(diǎn)B(0,4).
(1)求該拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在第三象限內(nèi)的拋物線上有一點(diǎn)P,使得PA⊥AB,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)C(,)在該拋物線上,當(dāng)≤≤3時(shí),1≤≤5,請(qǐng)確定的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com