【題目】已知點(diǎn)A(﹣2,3),則點(diǎn)A關(guān)于x軸的對稱點(diǎn)A1的坐標(biāo)為;關(guān)于y軸對稱點(diǎn)A2的坐標(biāo)為 , 關(guān)于原點(diǎn)的對稱點(diǎn)A3的坐標(biāo)為 .
【答案】(﹣2,﹣3);(2,3);(2,﹣3)
【解析】解:點(diǎn)A(﹣2,3),則點(diǎn)A關(guān)于x軸的對稱點(diǎn)A1的坐標(biāo)為(﹣2,﹣3);
關(guān)于y軸對稱點(diǎn)A2的坐標(biāo)為:(2,3),關(guān)于原點(diǎn)的對稱點(diǎn)A3的坐標(biāo)為:(2,﹣3).
所以答案是:(﹣2,﹣3),(2,3),(2,﹣3).
【考點(diǎn)精析】本題主要考查了關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的相關(guān)知識點(diǎn),需要掌握兩個點(diǎn)關(guān)于原點(diǎn)對稱時,它們的坐標(biāo)的符號相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P’(-x,-y)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點(diǎn),過點(diǎn)A作AD⊥BP于點(diǎn)D,交直線BC于點(diǎn)Q.
(1)如圖1,當(dāng)P在線段AC上時,求證:BP=AQ;
(2)如圖2,當(dāng)P在線段CA的延長線上時,(1)中的結(jié)論是否成立?(填“成立”或“不成立”)
(3)在(2)的條件下,當(dāng)∠DBA=度時,存在AQ=2BD,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育館計劃從一家體育用品商品一次性購買若干個排球和籃球(每個排球的價格都相同,每個籃球的價格都相同),雙方洽談的信息如下:
信息一:購買1個排球和2個籃球共需210元;
信息二:購買2個排球和3個籃球共需340元;
信息三:購買排球和籃球共50個,總費(fèi)用不超過3200元,且購買排球的個數(shù)少于30個.
(1)每個排球和每個籃球的價格各是多少元?
(2)該體育館有幾種購買方案?應(yīng)選擇哪種購買方案可使總費(fèi)用最低?最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線和直線AB的圖象交于點(diǎn)A(﹣3,4),AC⊥x軸于點(diǎn)C.
(1)求雙曲線的解析式;
(2)當(dāng)直線AB繞著點(diǎn)A轉(zhuǎn)動時,與x軸的交點(diǎn)為B(a,0),并與雙曲線另一支還有一個交點(diǎn)的情形下,求△ABC的面積S與a之間的函數(shù)關(guān)系式,并指出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩條直線相交所成的四個角中的任意一個角等于___,那么這兩條直線互相垂直.其中的一條直線叫做另一條直線的_____,它們的交點(diǎn)叫做______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 OD 是∠AOB 的角平分線,C 為 OD 上一點(diǎn).
(1)過點(diǎn) C 畫直線 CE∥OB,交 OA 于 E;過點(diǎn) C 畫直線 CF∥OA,交 OB 于 F;過點(diǎn) C 畫線段 CG⊥OA,垂足為 G.
(2)根據(jù)畫圖回答問題:
①線段的長度就是點(diǎn)C到OA的距離;
②比較大。篊ECG(填“>”或“=”或“<”);
③通過度量比較∠AOD與∠ECO的關(guān)系是:∠AOD∠ECO(填“>”或“=”或“<”);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠ACD=∠B,AD⊥CD.
(1)求證:CD是⊙O的切線;
(2)若AD=1,OA=2,求AC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD⊥AB,垂足為E,且=PEPO.
(1)求證:PC是⊙O的切線.
(2)若OE:EA=1:2,PA=6,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com