【題目】如圖,在平面直角坐標(biāo)系xOy中,,,點(diǎn)D在x軸上,若在線段包括兩個(gè)端點(diǎn)上找點(diǎn)P,使得點(diǎn)A,D,P構(gòu)成等腰三角形的點(diǎn)P恰好只有1個(gè),下列選項(xiàng)中滿足上述條件的點(diǎn)D坐標(biāo)不可以是
A. B. C. D.
【答案】B
【解析】
先利用勾股定理計(jì)算出AB=5,然后利用等腰三角形的判定方法對(duì)各選項(xiàng)進(jìn)行判斷.
解:∵A(4,0),B(0,3),
∴AB=5,
當(dāng)D點(diǎn)坐標(biāo)為(3,0)時(shí),只能作以PD、PA為腰的等腰三角形;
當(dāng)D點(diǎn)坐標(biāo)為(1,0)時(shí),可作以PD、PA為腰的等腰三角形也可作AP=AD(此時(shí)P點(diǎn)在B點(diǎn));
當(dāng)D點(diǎn)坐標(biāo)為(5,0)時(shí),只能作以AP、AD為腰的等腰三角形;
當(dāng)D點(diǎn)坐標(biāo)為(9,0)時(shí),只能作以AP、AD為腰的等腰三角形(此時(shí)P點(diǎn)在B點(diǎn)).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,3).
(1)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到的△A1BC1.
(2)以原點(diǎn)O為位似中心,位似比為2:1,在y軸的左側(cè),畫(huà)出將△ABC放大后的△A2B2C2,并寫(xiě)出A2點(diǎn)的坐標(biāo)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商店試銷一款成本為 50 元的排球,規(guī)定試銷期間單價(jià)不低于成本價(jià),且獲利不得高于 40%。經(jīng)試銷發(fā)現(xiàn),銷售量 (個(gè))與銷售單價(jià) (元)之間滿足如圖所示的一次函數(shù)關(guān)系.
(1)試確定與 之間的函數(shù)關(guān)系式;
(2)若該體育用品商店試銷的這款排球所獲得的利潤(rùn)為 元,試寫(xiě)出利潤(rùn) (元)與銷售單價(jià) (元)之間的函數(shù)關(guān)系式;當(dāng)試銷單價(jià)定為多少元時(shí),該商店可獲最大利潤(rùn)?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)寫(xiě)出圖中小于平角的角.
(2)求出∠BOD的度數(shù).
(3)小明發(fā)現(xiàn)OE平分∠BOC,請(qǐng)你通過(guò)計(jì)算說(shuō)明道理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣7,點(diǎn)B表示的數(shù)為5,點(diǎn)C到點(diǎn)A,點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0)秒.
(1)點(diǎn)C表示的數(shù)是 ;
(2)求當(dāng)t等于多少秒時(shí),點(diǎn)P到達(dá)點(diǎn)B處;
(3)點(diǎn)P表示的數(shù)是 (用含有t的代數(shù)式表示);
(4)求當(dāng)t等于多少秒時(shí),PC之間的距離為2個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).
解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫(huà)出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,a),點(diǎn)B,點(diǎn)C的坐標(biāo)分別為(-b,0),(b,0).
(1)如圖,求點(diǎn)A,B,C的坐標(biāo);
(2)如圖,若點(diǎn)D在第一象限且滿足AD=AC,∠DAC=90°,求BD;
(3)如圖,在(2)的條件下,若在第四象限有一點(diǎn)E,滿足∠BEC=∠BDC,請(qǐng)?zhí)骄?/span>BE,CE,AE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù) ;當(dāng)t=3時(shí),OP=
(2)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒8個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P,R同時(shí)出發(fā),問(wèn)點(diǎn)R運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)P?
(3)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒8個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P,R同時(shí)出發(fā),問(wèn)點(diǎn)R運(yùn)動(dòng)多少秒時(shí)PR相距2個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,﹣3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線y=﹣x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
(4)當(dāng)E是直線y=﹣x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com