【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D.
(1)求證:AE是⊙O的切線;
(2)若BC=2,∠D=60°時(shí),求劣弧AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)由AB是⊙O的直徑,根據(jù)半圓(或直徑)所對(duì)的圓周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,則可得AE是⊙O的切線;
(2)首先連接OC,易得△OBC是等邊三角形,則可得∠AOC=120°,由弧長(zhǎng)公式,即可求得劣弧AC的長(zhǎng).
解:(1)∵∠ABC與∠D都是弧AC所對(duì)的圓周角,
∴∠ABC=∠D,
∵AB是⊙O的直徑,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切線;
(2)如圖,連接OC,
∵∠ABC=∠D=60°,
∴∠AOC=120°,
∴劣弧AC的長(zhǎng)為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解題時(shí),最容易想到的方法未必是最簡(jiǎn)單的,你可以再想一想,盡量?jī)?yōu)化解法.
例題呈現(xiàn)
關(guān)于x的方程a(x+m)2+b=0的解是x1=1,x2=-2(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是 .
解法探討
(1)小明的思路如圖所示,請(qǐng)你按照他的思路解決這個(gè)問(wèn)題;
小明的思路
第1步 把1、-2代入到第1個(gè)方程中求出m的值;
第2步 把m的值代入到第1個(gè)方程中求出的值;
第3步 解第2個(gè)方程.
(2)小紅仔細(xì)觀察兩個(gè)方程,她把第2個(gè)方程a(x+m+2)2+b=0中的“x+2”看作第1個(gè)方程中的“x”,則“x+2”的值為 ,從而更簡(jiǎn)單地解決了問(wèn)題.
策略運(yùn)用
(3)小明和小紅認(rèn)真思考后發(fā)現(xiàn),利用方程結(jié)構(gòu)的特點(diǎn),無(wú)需計(jì)算“根的判別式”就能輕松解決以下問(wèn)題,請(qǐng)用他們說(shuō)的方法完成解答.
已知方程 (a2-2b2)x2+(2b2-2c2)x+2c2-a2=0有兩個(gè)相等的實(shí)數(shù)根,其中a、b、c是△ABC三邊的長(zhǎng),判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)中(,是常數(shù))的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:
…… | 0 | 1 | 2 | 3 | 4 | …… | ||
…… | 10 | 5 | 2 | 1 | 2 | 5 | …… |
下列結(jié)論正確的是:
A.當(dāng)時(shí),有最大值1
B.當(dāng)時(shí),隨的增大而增大
C.點(diǎn)在該函數(shù)的圖像上
D.若,兩點(diǎn)都在該函數(shù)的圖象上,則當(dāng)時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月23日是中國(guó)人民解放軍海軍成立70周年紀(jì)念日,屆時(shí)將在青島舉行盛大的多國(guó)海軍慶;顒(dòng).為此我國(guó)海軍進(jìn)行了多次軍事演習(xí).如圖,在某次軍事演習(xí)時(shí),艦艇A發(fā)現(xiàn)在他北偏東22°方向上有不明敵艦在指揮中心O附近徘徊,快速報(bào)告給指揮中心,此時(shí)在艦艇A正西方向50海里處的艦艇B接到返回指揮中心的行動(dòng)指令,艦艇B迅速趕往在他北偏東60°方向的指揮中心處,艦艇B的速度是80海里/小時(shí),請(qǐng)根據(jù)以上信息,求艦艇B到達(dá)指揮中心O的時(shí)間.(結(jié)果精確到0.1小時(shí),參考數(shù)據(jù):(sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,=1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2﹣2kx+3k+4.
(1)拋物線經(jīng)過(guò)原點(diǎn)時(shí),求k的值.
(2)頂點(diǎn)在x軸上時(shí),求k的值;
(3)頂點(diǎn)在y軸上時(shí),求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,矩形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)O關(guān)于直線AD的對(duì)稱點(diǎn)是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說(shuō)明理由;
(2)請(qǐng)你連接EB、EC,并證明EB=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長(zhǎng)度為27米,AB位置的墻最大可用長(zhǎng)度為15米),另兩邊用木欄圍成,中間也用木欄隔開(kāi),分成兩個(gè)場(chǎng)地及一處通道,并在如圖所示的三處各留1米寬的門(mén)(不用木欄)。建成后木欄總長(zhǎng)45米。設(shè)飼養(yǎng)場(chǎng)(矩形ABCD)的一邊AB長(zhǎng)為x米.
(1)飼養(yǎng)場(chǎng)另一邊BC= 米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場(chǎng)的面積為180平方米,求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com