【題目】每年5月的第二周為:“職業(yè)教育活動周”,今年我市展開了以“弘揚工匠精神,打造技能強國”為主題的系列活動,活動期間某職業(yè)中學組織全校師生并邀請學生家長和社區(qū)居民參加“職教體驗觀摩”活動,相關(guān)職業(yè)技術(shù)人員進行了現(xiàn)場演示,活動后該校隨機抽取了部分學生進行調(diào)查:“你最感興趣的一種職業(yè)技能是什么?”并對此進行了統(tǒng)計,繪制了統(tǒng)計圖(均不完整).
(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)若該校共有3000名學生,請估計該校對“工藝設(shè)計”最感興趣的學生有多少人?
(3)要從這些被調(diào)查的學生中隨機抽取一人進行訪談,那么正好抽到對“機電維修”最感興趣的學生的概率是 .
【答案】
(1)解:補全的扇形統(tǒng)計圖和條形統(tǒng)計圖如圖所示
(2)解:3000×30%=900(人),
∴估計該校對“工業(yè)設(shè)計”最感興趣的學生是900人;
(3)0.13
【解析】(3)要從這些被調(diào)查的學生中隨機抽取一人進行訪談,那么正好抽到對“機電維修”最感興趣的學生的概率是 0.13(或13%或 ). (1)根據(jù)喜歡其它累的人數(shù)是18,所占的百分比是9%,據(jù)此即可求的調(diào)查的總?cè)藬?shù),進而根據(jù)百分比的意義求得扇形統(tǒng)計圖中每部分的百分比,補全統(tǒng)計圖;(2)利用總?cè)藬?shù)乘以對應的百分比即可;(3)概率約等于對應的百分比即可作出解答.
科目:初中數(shù)學 來源: 題型:
【題目】某旅行社組織一批游客外出旅游,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座客車,則多出一輛車,且其余客車恰好坐滿.已知45座客車租金為每輛220元,60座客車租金為每輛300元,問:
(1)這批游客的人數(shù)是多少?原計劃租用多少輛45座客車?
(2)若租用同一種車,要使每位游客都有座位,應該怎樣租用才合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,CE,BE的交點為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3……
第n次操作,分別作∠ABEn-1和∠DCEn-1的平分線,交點為En.
(1)如圖①,求證:∠E=∠B+∠C;
(2)如圖②,求證:∠E1=∠E;
(3)猜想:若∠En=b°,求∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于實數(shù)、我們定義一種新運算(其中、均為非零常數(shù)).等式右邊是通常的四則運算.由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中、叫做線性數(shù)的一個數(shù)對.若實數(shù)、都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的、叫做正格線性數(shù)的正格數(shù)對.
(1)若,則 .
(2)已知,若正格線性數(shù),求滿足不等式組的所有的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價.
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(元/千克) | 20 | 25 | 30 |
千克數(shù) | 40 | 40 | 20 |
(1)求該什錦糖的單價.
(2)為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3.
(1)觀察每次變換前后的三角形的變化規(guī)律,若將△OA3B3變換成△OA4B4,則A4的坐標是__,B4的坐標是__;
(2)若按第(1)題找到的規(guī)律將△OAB進行n次變換,得到△OAnBn,比較每次變換中三角形頂點坐標有何變化,找出規(guī)律,推測An的坐標是__,Bn的坐標是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,A點坐標為(2,4),B點坐標為(﹣3,﹣2),C點坐標為(3,1).
(1)在圖中畫出△ABC關(guān)于y軸對稱的△A′B′C′(不寫畫法),并寫出點A′,B′,C′的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1.O),點A第一次跳動至點A1(-1,1).第四次向右跳動5個單位至點A4(3,2),…,依此規(guī)律跳動下去,點A第100次跳動至點A100的坐標是( )
A. (50,49) B. (51, 49) C. (50, 50) D. (51, 50)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com