(2007•隨州)如圖,正方形ABCD的邊長(zhǎng)為4,E是BC邊的中點(diǎn),點(diǎn)P在射線AD上,過P作PF⊥AE于F.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在射線AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使以P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,說明理由.

【答案】分析:(1)在△PFA與△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;
(2)根據(jù)題意:若△EFP∽△ABE,則∠PEF=∠EAB;必須有PE∥AB;分兩種情況進(jìn)而列出關(guān)系式.
解答:(1)證明:∵AD∥BC,
∴∠PAF=∠AEB.
∵∠PFA=∠ABE=90°,
∴△PFA∽△ABE.

(2)解:若△EFP∽△ABE,則∠PEF=∠EAB.
∴PE∥AB.
∴四邊形ABEP為矩形.
∴PA=EB=2,即x=2.
若△PFE∽△ABE,則∠PEF=∠AEB.
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴點(diǎn)F為AE的中點(diǎn).
∵AE==2,
∴EF=AE=
,即,
∴PE=5,即x=5.
∴滿足條件的x的值為2或5.
點(diǎn)評(píng):解答本題要充分利用正方形的特殊性質(zhì).注意在正方形中的特殊三角形的應(yīng)用,搞清楚矩形、菱形、正方形中的三角形的三邊關(guān)系,可有助于提高解題速度和準(zhǔn)確率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•隨州)如圖,直角梯形ABCD的腰BC所在直線的解析式為y=-x-6,點(diǎn)A與坐標(biāo)原點(diǎn)O重合,點(diǎn)D的坐標(biāo)為(0,-4),將直角梯形ABCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,得到直角梯形OEFG(如圖1).
(1)直接寫出E,F(xiàn)兩點(diǎn)的坐標(biāo)及直角梯形OEFG的腰EF所在直線的解析式;
(2)將圖1中的直角梯形ABCD先沿x軸向右平移到點(diǎn)A與點(diǎn)E重合的位置,再讓直角頂點(diǎn)A緊貼著EF,向上平移直角梯形ABCD(即梯形ABCD向上移動(dòng)時(shí),總保持著AB∥FG),當(dāng)點(diǎn)A與點(diǎn)F重合時(shí),梯形ABCD停止移動(dòng).觀察得知:在梯形ABCD移動(dòng)過程中,其腰BC始終經(jīng)過坐標(biāo)原點(diǎn)O.(如圖2)
①設(shè)點(diǎn)A的坐標(biāo)為(a,b),梯形ABCD與梯形OEFG重合部分的面積為S,試求a與何值時(shí),S的值恰好等于梯形OEFG面積的;
②當(dāng)點(diǎn)A在EF上滑動(dòng)時(shí),設(shè)AD與x軸的交點(diǎn)為M,試問:在y軸上是否存在點(diǎn)P,使得△PAM是底角為30°的等腰三角形?如果存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.(利用圖3進(jìn)行探索)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省隨州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•隨州)如圖,直角梯形ABCD的腰BC所在直線的解析式為y=-x-6,點(diǎn)A與坐標(biāo)原點(diǎn)O重合,點(diǎn)D的坐標(biāo)為(0,-4),將直角梯形ABCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,得到直角梯形OEFG(如圖1).
(1)直接寫出E,F(xiàn)兩點(diǎn)的坐標(biāo)及直角梯形OEFG的腰EF所在直線的解析式;
(2)將圖1中的直角梯形ABCD先沿x軸向右平移到點(diǎn)A與點(diǎn)E重合的位置,再讓直角頂點(diǎn)A緊貼著EF,向上平移直角梯形ABCD(即梯形ABCD向上移動(dòng)時(shí),總保持著AB∥FG),當(dāng)點(diǎn)A與點(diǎn)F重合時(shí),梯形ABCD停止移動(dòng).觀察得知:在梯形ABCD移動(dòng)過程中,其腰BC始終經(jīng)過坐標(biāo)原點(diǎn)O.(如圖2)
①設(shè)點(diǎn)A的坐標(biāo)為(a,b),梯形ABCD與梯形OEFG重合部分的面積為S,試求a與何值時(shí),S的值恰好等于梯形OEFG面積的
②當(dāng)點(diǎn)A在EF上滑動(dòng)時(shí),設(shè)AD與x軸的交點(diǎn)為M,試問:在y軸上是否存在點(diǎn)P,使得△PAM是底角為30°的等腰三角形?如果存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.(利用圖3進(jìn)行探索)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(01)(解析版) 題型:選擇題

(2007•隨州)如圖,兩條直線a、b被第三條直線l所截,如果a∥b,∠1=55°,那么∠2的度數(shù)為( )

A.125°
B.105°
C.65°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省隨州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•隨州)如圖,由四個(gè)全等的直角三角形拼成“趙爽弦圖”.Rt△ABF中,∠AFB=90°,AF=4,AB=5.四邊形EFGH的面積是   

查看答案和解析>>

同步練習(xí)冊(cè)答案