【題目】如圖,點(diǎn)A,E是半圓周上的三等分點(diǎn),直徑BC=2,ADBC,垂足為D,連接BE交AD于F,過A作AGBE交BC于G.

(1)判斷直線AG與O的位置關(guān)系,并說明理由.

(2)求線段AF的長(zhǎng).

【答案】1AG與O相切,理由見解析(2

【解析】解:(1)直線AG與O的位置關(guān)系是AG與O相切,理由如下:

連接OA,

點(diǎn)A,E是半圓周上的三等分點(diǎn),

。點(diǎn)A是的中點(diǎn)。

OABE。

AGBE,OAAG。AG與O相切。

(2)點(diǎn)A,E是半圓周上的三等分點(diǎn),∴∠AOB=AOE=EOC=60°

OA=OB,∴△ABO為正三角形。

ADOB,OB=1,BD=OD=,AD=。

∵∠EBC=EOC=30°,

在RtFBD中,F(xiàn)D=BDtanEBC=BDtan30°=

AF=AD﹣DF=。

答:AF的長(zhǎng)是。

(1)求出弧AB=弧AE=弧EC,推出OABE,根據(jù)AGBE,推出OAAG,根據(jù)切線的判定即可得出答案。

(2)求出等邊三角形AOB,求出BD、AD長(zhǎng),求出EBC=30°,在FBD中,通過解直角三角形求出DF即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、AC與⊙O相切于點(diǎn)B、C,∠A=50°,P為⊙O上異于B、C的一個(gè)動(dòng)點(diǎn),則∠BPC的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4分)如圖,拋物線的對(duì)稱軸是.且過點(diǎn)(0),有下列結(jié)論:abc0a﹣2b+4c=0;25a﹣10b+4c=0;3b+2c0a﹣b≥mam﹣b);其中所有正確的結(jié)論是 .(填寫正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy中,直線ykxb x軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖像相交于點(diǎn) A(1,8)、B(m,2)

(1)求該反比例函數(shù)和直線y kxb的表達(dá)式;

(2)求證:ΔOBC為直角三角形;

(3)設(shè)∠ACOα,點(diǎn)Q為反比例函數(shù)在第一象限內(nèi)的圖像上一動(dòng)點(diǎn),且滿足90°α<∠QOCα,求點(diǎn)Q的橫坐標(biāo)q的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形中,,的垂直平分線分別交于點(diǎn),垂足為

1)如圖1,連接,求證:四邊形為菱形;

2)如圖2,動(dòng)點(diǎn)分別從兩點(diǎn)同時(shí)出發(fā),沿各邊勻速運(yùn)動(dòng)一周,即點(diǎn)停止,點(diǎn)停止.在運(yùn)動(dòng)過程中,

①已知點(diǎn)的速度為每秒,點(diǎn)的速度為每秒,運(yùn)動(dòng)時(shí)間為秒,當(dāng)四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),則____________

②若點(diǎn)的運(yùn)動(dòng)路程分別為 (單位:),已知四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,則滿足的數(shù)量關(guān)系式為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1;(2;(3;(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M

1)求二次函數(shù)的解析式;

2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點(diǎn)N,使NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為選拔一名選手參加美麗江門,我為僑鄉(xiāng)做代言主題演講比賽,經(jīng)研究,按下圖所示的項(xiàng)目和權(quán)數(shù)對(duì)選拔賽參賽選手進(jìn)行考評(píng)(因排版原因統(tǒng)計(jì)圖不完整),下表是李明、張華在選拔賽中的得分情況:

服裝

普通話

主題

演講技巧

李明

85

70

80

85

張華

90

75

75

80

結(jié)合以上信息,回答下列問題:

1)求服裝項(xiàng)目在選手考評(píng)中的權(quán)數(shù);

2)根據(jù)你所學(xué)的知識(shí),幫助學(xué)校在李明、張華兩人中選擇一人參加美麗江門,我為僑鄉(xiāng)做代言主題演講比賽,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案