【題目】如圖,是一塊四邊形綠地的示意圖,其中AB長(zhǎng)為24米,BC長(zhǎng)15米,CD長(zhǎng)為20米,DA長(zhǎng)7米,C=90°,求綠地ABCD的面積.

【答案】綠地ABCD的面積為234平方米.

【解析】試題分析:連接BD,先根據(jù)勾股定理求出BD的長(zhǎng),再由勾股定理的逆定理判定△ABD為直角三角形,則四邊形ABCD的面積=直角△BCD的面積+直角△ABD的面積.

試題解析:

連接BD.如圖所示:

∵∠C=90°,BC=15米,CD=20米,

BD===25(米);

在△ABD中,BD=25米,AB=24米,DA=7米,

242+72=252,即AB2+BD2=AD2

∴△ABD是直角三角形.

S四邊形ABCD=S△ABD+S△BCD

=ABAD+BCCD

=×24×7+×15×20

=84+150

=234(平方米);

即綠地ABCD的面積為234平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且與二次函數(shù)的圖象相交于、兩點(diǎn).

(1)求這兩個(gè)函數(shù)的表達(dá)式及點(diǎn)的坐標(biāo);

(2)在同一坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)取何值時(shí),一次函數(shù)的函數(shù)值小于二次函數(shù)的函數(shù)值;

(3)求△BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12)如圖,在矩形ABCD中,AB12cm,BC8cm.點(diǎn)E、F、G分別從點(diǎn)

A、B、C同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向移動(dòng),點(diǎn)EG的速度均為2cm/s,點(diǎn)F的速

度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),三個(gè)點(diǎn)隨之停止移動(dòng).設(shè)移動(dòng)開始后

ts時(shí),EFG的面積為Scm2

(1)當(dāng)t1s時(shí),S的值是多少?

(2)寫出St之間的函數(shù)解析式,并指出自變量t的取值范圍;

(3)若點(diǎn)F在矩形的邊BC上移動(dòng),當(dāng)t為何值時(shí),以點(diǎn)B、EF為頂點(diǎn)的三角形與以C、F、G為頂點(diǎn)的三角形相似?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,D BC 邊的中點(diǎn),E、F 分別在 AD 及其延長(zhǎng)線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤(rùn),每件應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)直接寫出C點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在銳角ABC中,AB=5,tanC=3,BDAC于點(diǎn)DBD=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)PPEAC交邊BC于點(diǎn)E,以PE為邊作RtPEF,使∠EPF=90°,點(diǎn)F在點(diǎn)P的下方,且EFAB.設(shè)PEFABD重疊部分圖形的面積為S(平方單位)(S0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t0).

1)求線段AC的長(zhǎng).

2)當(dāng)PEFABD重疊部分圖形為四邊形時(shí),求St之間的函數(shù)關(guān)系式.

3若邊EF與邊AC交于點(diǎn)Q,連結(jié)PQ,如圖②

①當(dāng)PQPEF的面積分成12兩部分時(shí),求AP的長(zhǎng).

②直接寫出PQ的垂直平分線經(jīng)過(guò)ABC的頂點(diǎn)時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)CD為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N

3)連接OM,MN

根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊三角形ABC,直線1過(guò)點(diǎn)C且垂直AC

1)請(qǐng)?jiān)谥本1上作出點(diǎn)D,使得ABD的周長(zhǎng)最。

2)在(1)的條件下,連接AD,BD,求證,AD2BD

查看答案和解析>>

同步練習(xí)冊(cè)答案