【題目】如圖,O經(jīng)過菱形ABCD的三個頂點A、C、D,且與AB相切于點A

(1)求證:BC為O的切線;

(2)求B的度數(shù).

【答案】解:(1)證明:如圖,連接OA、OB、OC,

AB與O切于A點,OAAB,即OAB=90°。

四邊形ABCD為菱形,BA=BC。

ABO和CBO中,,

∴△ABC≌△CBO(SSS)。∴∠BOC=OAC=90°。OCBC。

OC是O的半徑,BC為O的切線。

(2)連接BD,

∵△ABC≌△CBO,∴∠AOB=COB。

四邊形ABCD為菱形,BD平分ABC,CB=CD。

點O在BD上。

∵∠BOC=ODC+OCD,而OD=OC,∴∠ODC=OCD。

∴∠BOC=2ODC。

CB=CD,∴∠OBC=ODC。∴∠BOC=2OBC。

∵∠BOC+OBC=90°,∴∠OBC=30°。∴∠ABC=2OBC=60°

【解析】

試題(1)連接OA、OB、OC、BD,根據(jù)切線的性質(zhì)得OAAB,即OAB=90°,再根據(jù)菱形的性質(zhì)得BA=BC,然后根據(jù)“SSS”可判斷ABC≌△CBO,則BOC=OAC=90°,于是可根據(jù)切線的判定方法即可得到結(jié)論。

(2)由ABC≌△CBO得AOB=COB,則AOB=COB,由于菱形的對角線平分對角,所以點O在BD上,利用三角形外角性質(zhì)有BOC=ODC+OCD,則BOC=2ODC,由于CB=CD,則OBC=ODC,所以BOC=2OBC,根據(jù)BOC+OBC=90°可計算出OBC=30°,然后利用ABC=2OBC計算即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CD是邊AB上的高,且

1)求證:△ACD∽△CBD;

2)求∠ACB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,∠ACB=90°,點DBC的延長線上,連接AD,過BBEAD,垂足為E,交AC于點F,連接CE

(1)求證:BCF≌△ACD

(2)猜想BEC的度數(shù),并說明理由;

(3)探究線段AEBE,CE之間滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=10,BC=6,點D在AB的延長線上,且BD=6,過點D作DE⊥AD交AC的延長線于點E,以DE為直徑的⊙O交AE于點F.

(1)求⊙O的半徑;

(2)設(shè)CD交⊙O于點Q,①試說明Q為CD的中點;②求BQ·BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=2,點ECD上,DE=1,點F是邊AB上一動點,以EF為斜邊作RtEFP.若點P在矩形ABCD的邊上,且這樣的直角三角形恰好有兩個,則AF的值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是兩個全等的直角三角形,量得它們的斜邊長為,較小銳角為,將這兩個三角形擺成如圖(1)所示的形狀,使點、、、在同一條直線上,且點與點重合,將圖(1)中的繞點順時針方向旋轉(zhuǎn)到圖(2)的位置,點在邊上,于點,則線段的長為______.(保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD紙片上有一點PPA1,PD2,PC3,現(xiàn)將△PCD剪下,并將它拼到如圖所示位置(CA重合,PG重合,DD重合),則∠APD的度數(shù)為( 。

A.150°B.135°C.120°D.108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里有分別標(biāo)注2、4、6的3個小球(小球除數(shù)字不同外,其余都相同),另有3張背面完全一樣、正面分別寫有數(shù)字6、7、8的卡片.現(xiàn)從口袋中任意摸出一個小球,再從這3張背面朝上的卡片中任意摸出一張卡片.

(1)請你用列表或畫樹狀圖的方法,表示出所有可能出現(xiàn)的結(jié)果;

(2)小紅和小莉做游戲,制定了兩個游戲規(guī)則:

規(guī)則1:若兩次摸出的數(shù)字,至少有一次是“6”,小紅贏;否則,小莉贏.

規(guī)則2:若摸出的卡片上的數(shù)字是球上數(shù)字的整數(shù)倍時,小紅贏;否則,小莉贏.

小紅要想在游戲中獲勝,她會選擇哪一種規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=ax+bx+c的圖象先向右平移3個單位,再向下平移2個單位,所得的圖象的解析式是y=x-3x+5,則a+b+c=__________。

查看答案和解析>>

同步練習(xí)冊答案