【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全國(guó)數(shù)學(xué)競(jìng)賽,在最近的五次選拔測(cè)試中,他倆的成績(jī)分別如下表:

根據(jù)上表解答下列問(wèn)題:

(1)完成下表:

姓名

極差(分)

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

40

80

75

75

190

小李

(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是誰(shuí)?若將80分以上(含80分)的成績(jī)視為優(yōu)秀,則小王、小李在這五次測(cè)試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為應(yīng)選誰(shuí)參加比賽比較合適?說(shuō)明你的理由.

【答案】(1)見(jiàn)解析;(2)成績(jī)比較穩(wěn)定的是小李,小王的優(yōu)秀率為40%,小李的優(yōu)秀率為80%;(3)見(jiàn)解析.

【解析】

1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差、極差的概念求得相關(guān)的數(shù);

2)方差反映數(shù)據(jù)的離散程度,所以方差越小越穩(wěn)定,應(yīng)此小李的成績(jī)穩(wěn)定;小王的優(yōu)秀率=,小李的優(yōu)秀率=;

3)選誰(shuí)參加比賽的答案不唯一,小李的成績(jī)穩(wěn)定,所以獲獎(jiǎng)的幾率大小王的90分以上的成績(jī)好,則小王獲一等獎(jiǎng)的機(jī)會(huì)大

1)小李的平均分==80,中位數(shù)=80,眾數(shù)=80,方差==40,極差=最大的數(shù)﹣?zhàn)钚〉臄?shù)=9070=20;

2)在這五次考試中,成績(jī)比較穩(wěn)定的是小李,小王的優(yōu)秀率=×100%=40%,小李的優(yōu)秀率=×100%=80%;

3)方案一我選小李去參加比賽,因?yàn)樾±畹膬?yōu)秀率高,4次得80,成績(jī)比較穩(wěn)定,獲獎(jiǎng)機(jī)會(huì)大

方案二我選小王去參加比賽因?yàn)樾⊥醯某煽?jī)獲得一等獎(jiǎng)的機(jī)率較高,290分以上(含90分),因此有可能獲得一等獎(jiǎng)

(注答案不唯一,考生可任選其中一人只要分析合理,都給滿分.若選兩人都去參加,不合題意不給分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知∠CAB60°,D、E分別是邊ABAC上的點(diǎn),且∠AED60°,ED+DBCE,∠CDB2CDE,則∠DCB等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CDEF所截,若已知∠1=2,說(shuō)明AB//CD的理由.

解:根據(jù)__________ 得∠2=3,又因?yàn)椤?/span>1=2,

所以∠ ________ = _________ ,

根據(jù)____________________________ 得:_________ // _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問(wèn)題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來(lái)得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問(wèn)題時(shí),有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說(shuō)明理由參考小敏思考問(wèn)題方法解決一下問(wèn)題;

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家趙爽的勾股圓方圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么 的值為( ).

A. 49 B. 25 C. 13 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.

1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,填寫下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140



2)小明家某月用電120度,需交電費(fèi)

3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;

4)在每月用電量超過(guò)230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知均為等腰直角三角形,,點(diǎn)的中點(diǎn).過(guò)點(diǎn)平行的直線交射線于點(diǎn).

1)當(dāng)、三點(diǎn)在同一直線上時(shí)(如圖1),求證:的中點(diǎn);

2)將圖1繞點(diǎn)旋轉(zhuǎn),當(dāng)、、三點(diǎn)在同一直線上時(shí)(如圖2),求證: 為等腰直角三角形;

3)在(2)條件下,已知,的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)600個(gè)旅游紀(jì)念品,進(jìn)價(jià)為每個(gè)6元,第一周以每個(gè)10元的價(jià)格售出200個(gè),第二周若按每個(gè)10元的價(jià)格銷售仍可售出200個(gè),但商店為了適當(dāng)增加銷量,決定降價(jià)銷售(根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出50個(gè),但售價(jià)不得低于進(jìn)價(jià)),單價(jià)降低x元銷售銷售一周后,商店對(duì)剩余旅游紀(jì)念品清倉(cāng)處理,以每個(gè)4元的價(jià)格全部售出,如果這批旅游紀(jì)念品共獲利1250元,問(wèn)第二周每個(gè)旅游紀(jì)念品的銷售價(jià)格為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:有一組相鄰內(nèi)角相等的凸四邊形叫做“等鄰角四邊形”.請(qǐng)解答下列問(wèn)題:

(1)“梯形、長(zhǎng)方形、正方形”中“等鄰角四邊形”是____________

(2)如圖,在中,,點(diǎn)上,且,點(diǎn)、分別為、的中點(diǎn),連接并延長(zhǎng)交于點(diǎn).求證:四邊形是“等鄰角四邊形”;

(3)已知:在“等鄰角四邊形”中,,,,請(qǐng)畫出相應(yīng)圖形,并直接寫出的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案