【題目】利用平方根去根號可以構造一個整系數(shù)方程.例如:x= +1時,移項得x﹣1= ,兩邊平方得(x﹣1)2=( 2 , 所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述構造方法,當x= 時,可以構造出一個整系數(shù)方程是(
A.4x2+4x+5=0
B.4x2+4x﹣5=0
C.x2+x+1=0
D.x2+x﹣1=0

【答案】B
【解析】解:由題意可得:x= ,
可變形為:2x= ﹣1,
則(2x+1)= ,
故(2x+1)2=6,
則可以構造出一個整系數(shù)方程是:4x2+4x﹣5=0.
故選:B.
【考點精析】本題主要考查了一元二次方程的定義的相關知識點,需要掌握只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,Bx軸上,四邊形OACB為平行四邊形,且∠AOB=60°,反比例函數(shù)(k>0)在第一象限內(nèi)過點A,且與BC交于點F.(1)若OA=10,求反比例函數(shù)的解析式;

(2)若FBC的中點,且SAOF=24,求OA長及點C坐標;

(3)在(2)的條件下,過點FEFOBOA于點E(如圖2),若點P是直線EF上一個動點,連結(jié),PA,PO,問是否存在點P,使得以P,A,O三點構成的三角形是直角三角形?若存在,請指出這樣的P點有幾個,并直接寫出其中二個P點坐標;若不存在,請說明了理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,1925年數(shù)學家莫倫發(fā)現(xiàn)的世界上第一個完美長方形,它恰能被分割成10個大小不同的正方形.若標注①②的正方形邊長分別為56,請你直接寫出以下數(shù)據(jù):

(1)第6個正方形的邊長= ;

(2)第8個正方形的邊長=

(3)整個長方形的面積= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為疏導國慶假期交通,一輛交通巡邏車在南北公路上巡視.某天早上從地出發(fā),中午到達地,行駛記錄如下(規(guī)定向北為正方向,單位:千米):

,,,,

請你解答下列問題:

(1)地在地的什么方向?與地相距多遠?

(2)巡邏車在巡邏中,離開地最遠多少千米?

(3)若巡邏車行駛每千米耗油升,這半天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,我們不妨將橫坐標,縱坐標均為整數(shù)的點稱之為“中國結(jié)”.
(1)求函數(shù)y= x+2的圖象上所有“中國結(jié)”的坐標;
(2)若函數(shù)y= (k≠0,k為常數(shù))的圖象上有且只有兩個“中國結(jié)”,試求出常數(shù)k的值與相應“中國結(jié)”的坐標;
(3)若二次函數(shù)y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k為常數(shù))的圖象與x軸相交得到兩個不同的“中國結(jié)”,試問該函數(shù)的圖象與x軸所圍成的平面圖形中(含邊界),一共包含有多少個“中國結(jié)”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC為矩形,點A,C分別在x軸和y軸上,連接AC,點B的坐標為(8,6),CAO的平分線與y軸相交于點D,則點D的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EF分別是邊AB、CD上的點,AE=CF,連接EF,BFEF與對角線AC交于O點,且BE=BF∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,在Rt ΔABC中,∠ABC=900, ABBC=2.

(1)用尺規(guī)作∠A的平分線AD.

(2)角平分線ADBC于點D,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,RtABC的直角邊AC在x軸上,ACB=90°,AC=1,反比例函數(shù)(k0)的圖象經(jīng)過BC邊的中點D(3,1)

(1)求這個反比例函數(shù)的表達式;

(2)若ABC與EFG成中心對稱,且EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.

求OF的長;

連接AF,BE,證明四邊形ABEF是正方形.

查看答案和解析>>

同步練習冊答案