【題目】如圖,△ABC中,CD⊥AB于點D,⊙D經(jīng)過點B,與BC交于點E,與AB交與點F.已知tanA= ,cot∠ABC= ,AD=8.

(1)求⊙D的半徑;
(2)求CE的長.

【答案】
(1)

【答案】解:∵CD⊥AB,AD=8,tanA= ,
在Rt△ACD中,tanA= = ,AD=8,CD=4,
在Rt△CBD,cot∠ABC= = ,BD=3,
∴⊙D的半徑為3


(2)

解:過圓心D作DH⊥BC,垂足為H,


∴BH=EH,
在Rt△CBD中∠CDB=90°,BC= =5,cos∠ABC= = ,
在Rt△BDH中,∠BHD=90°,cos∠ABC= = ,BD=3,BH=
∵BH=EH,
∴BE=2BH= ,
∴CE=BC﹣BE=5﹣ =


【解析】(1)根據(jù)三角函數(shù)的定義得出CD和BD,從而得出⊙D的半徑;
(2)過圓心D作DH⊥BC,根據(jù)垂徑定理得出BH=EH,由勾股定理得出BC,再由三角函數(shù)的定義得出BE,從而得出CE即可.
【考點精析】認真審題,首先需要了解垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:ab=0.我們稱使得成立的一對數(shù)a,b為“相伴數(shù)對”,記為(a,b).

(1)若(1,b)是“相伴數(shù)對”,求b的值;

(2)若(mn是“相伴數(shù)對”,其中m≠0,求;

(3)若(m,n)是“相伴數(shù)對”,求代數(shù)式m﹣[4m﹣2(3n﹣1)]的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為正方形ABCD的對角線BD上任一點,過點P作PE⊥BC,PF⊥CD,垂足分別為點E、F,連接EF,下列結(jié)論①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP,其中正確的結(jié)論是(請?zhí)钚蛱枺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù) ,下列結(jié)論錯誤的是(
A.圖象經(jīng)過點(1,1)
B.當x<0時,y隨著x的增大而增大
C.當x>1時,0<y<1
D.圖象在第一、三象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,在△ABC中,∠ACB=90°,AC=BC,點DAB邊上的中點,點M和點N是動點,分別從A,C出發(fā),以相同的速度沿AC,CB邊上運動.

(1)判斷DMDN的關(guān)系,并說明理由;

(2)若AC=BC=2,請直接寫出四邊形MCND的面積;

(3)如圖,當點M運動到C點后,將改變方向沿著CB運動,此時,點NCB延長線上,過MME⊥CD于點E,過點NNF⊥DBDB延長線于F,求證:ME=NF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)結(jié)合圖象直接寫出不等式kx+b< 的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,鼓樓區(qū)政府決定對區(qū)直屬機關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機抽查了其中某些家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn),每戶用水量每月均在10﹣14噸范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計圖(不完整)和扇形統(tǒng)計圖.

(1)請將條形統(tǒng)計圖補充完整;

(2)這些家庭月用水量數(shù)據(jù)的平均數(shù)是   ,眾數(shù)是   ,中位數(shù)是   

(3)根據(jù)樣本數(shù)據(jù),估計鼓樓區(qū)直屬機關(guān)300戶家庭中月平均用水量不超過12噸的約有多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=3,AD=2,分別以邊AD,BC為直徑在矩形ABCD的內(nèi)部作半圓O1和半圓O2 , 一平行于AB的直線EF與這兩個半圓分別交于點E、點F,且EF=2(EF與AB在圓心O1和O2的同側(cè)),則由 ,EF, ,AB所圍成圖形(圖中陰影部分)的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】首條貫通絲綢之路經(jīng)濟帶的高鐵線﹣寶蘭客專進入全線拉通試驗階段,寶蘭客專的通車對加快西北地區(qū)與一帶一路沿線國家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義.試運行期間,一列動車從西安開往西寧,一列普通列車從西寧開往西安,兩車同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象進行一下探究:

【信息讀取】

1)西寧到西安兩地相距 千米,兩車出發(fā)后 小時相遇;

2)普通列車到達終點共需 小時,普通列車的速度是 千米/小時.

【解決問題】

3)求動車的速度;

4)普通列車行駛t小時后,動車到達終點西寧,求此時普通列車還需行駛多少千米到達西安?

查看答案和解析>>

同步練習冊答案