“五•一”假期,某火車客運站旅客流量不斷增大,旅客往往需要長時間排隊等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開始檢票時,有640人排隊檢票.檢票開始后,仍有旅客繼續(xù)前來排隊檢票進(jìn)站.設(shè)旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時,每分鐘候車室新增排隊檢票進(jìn)站16人,每分鐘每個檢票口檢票14人.已知檢票的前a分鐘只開放了兩個檢票口.某一天候車室排隊等候檢票的人數(shù)y(人)與檢票時間x(分鐘)的關(guān)系如圖所示.

(1)求a的值.
(2)求檢票到第20分鐘時,候車室排隊等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊的旅客都能檢票進(jìn)站,以便后來到站的旅客隨到隨檢,問檢票一開始至少需要同時開放幾個檢票口?
(1)a=10(2)260人(3)5個檢票口
解:(1)由圖象知,,
∴a=10。
(2)設(shè)當(dāng)時,y與x之間的函數(shù)關(guān)系式為y=kx+b,由題意,得
,解得:。
∴y=﹣26x+780。
當(dāng)x=2時,y=260,即檢票到第20分鐘時,候車室排隊等候檢票的旅客有260人。
(3)設(shè)需同時開放n個檢票口,則由題意知
解得:。
∵n為整數(shù),∴n=5。
答:至少需要同時開放5個檢票口.
(1)根據(jù)原有的人數(shù)﹣a分鐘檢票額人數(shù)+a分鐘增加的人數(shù)=520建立方程求出其解就可以。
(2)設(shè)當(dāng)時,y與x之間的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出函數(shù)的解析式,再將x=20代入解析式就可以求出結(jié)論。
(3)設(shè)需同時開放n個檢票口,根據(jù)原來的人數(shù)+15分進(jìn)站人數(shù)≥n個檢票口15分鐘檢票人數(shù)建立不等式,求出其解即可。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的A、B兩點,直線AB與x軸交于點C,點B的坐標(biāo)為(﹣6,n),線段OA=5,E為x軸正半軸上一點,且tan∠AOE=

(1)求反比例函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線y=kx+b經(jīng)過A(-1,1)和B(-,0)兩點,則不等式0<kx+b<-x的解集為_       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司投資700萬元購甲、乙兩種產(chǎn)品的生產(chǎn)技術(shù)和設(shè)備后,進(jìn)行這兩種產(chǎn)品加工.已知生產(chǎn)甲種產(chǎn)品每件還需成本費30元,生產(chǎn)乙種產(chǎn)品每件還需成本費20元.經(jīng)市場調(diào)研發(fā)現(xiàn):甲種產(chǎn)品的銷售單價為x(元),年銷售量為y(萬件),當(dāng)35≤x<50時,y與x之間的函數(shù)關(guān)系式為y=20﹣0.2x;當(dāng)50≤x≤70時,y與x的函數(shù)關(guān)系式如圖所示,乙種產(chǎn)品的銷售單價,在25元(含)到45元(含)之間,且年銷售量穩(wěn)定在10萬件.物價部門規(guī)定這兩種產(chǎn)品的銷售單價之和為90元.

(1)當(dāng)50≤x≤70時,求出甲種產(chǎn)品的年銷售量y(萬元)與x(元)之間的函數(shù)關(guān)系式.
(2)若公司第一年的年銷售量利潤(年銷售利潤=年銷售收入﹣生產(chǎn)成本)為W(萬元),那么怎樣定價,可使第一年的年銷售利潤最大?最大年銷售利潤是多少?
(3)第二年公司可重新對產(chǎn)品進(jìn)行定價,在(2)的條件下,并要求甲種產(chǎn)品的銷售單價x(元)在50≤x≤70范圍內(nèi),該公司希望到第二年年底,兩年的總盈利(總盈利=兩年的年銷售利潤之和﹣投資成本)不低于85萬元.請直接寫出第二年乙種產(chǎn)品的銷售單價m(元)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明某天上午9時騎自行車離開家,15時回家,他有意描繪離家的距離與時間的變化情況(如圖所示)。

(1)圖象表示了哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?
(2)10時和13時,他分別離家多遠(yuǎn)?
(3)他到達(dá)離家最遠(yuǎn)的地方是什么時間?離家多遠(yuǎn)?
(4)11時到12時他行駛了多少千米?
(5)他由離家最遠(yuǎn)的地方返回的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某大學(xué)生利用暑假40天社會實踐參與了一家網(wǎng)店經(jīng)營,了解到一種成本為20元/件的新型商品在第x天銷售的相關(guān)信息如下表所示。
銷售量p(件)
P=50—x
 
銷售單價q(元/件)
當(dāng)1≤x≤20時, 
當(dāng)21≤x≤40時, 
(1)請計算第幾天該商品的銷售單價為35元/件?
(2)求該網(wǎng)店第x天獲得的利潤y關(guān)于x的函數(shù)關(guān)系式。
(3)這40天中該網(wǎng)店第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

釣魚島自古就是中國領(lǐng)土,中國政府已對釣魚島開展常態(tài)化巡邏.某天,為按計劃準(zhǔn)點到達(dá)指定海域,某巡邏艇凌晨1:00出發(fā),勻速行駛一段時間后,因中途出現(xiàn)故障耽擱了一段時間,故障排除后,該艇加快速度仍勻速前進(jìn),結(jié)果恰好準(zhǔn)點到達(dá).如圖是該艇行駛的路程(海里)與所用時間t(小時)的函數(shù)圖象,則該巡邏艇原計劃準(zhǔn)點到達(dá)的時刻是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直線l1:y=k1x+b與直線l2:y=k2x在同一平面直角坐標(biāo)系中的圖象如圖所示,則關(guān)于x的不等式k1x+b>k2x的解為               。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線與坐標(biāo)軸分別交于兩點,動點同時從點出發(fā),同時到達(dá)點,運動停止.點沿線段運動,速度為每秒1個單位長度,點沿路線運動.

(1)直接寫出兩點的坐標(biāo);
(2)設(shè)點的運動時間為秒,的面積為,求出之間的函數(shù)關(guān)系式;
(3)當(dāng)時,求出點的坐標(biāo),并直接寫出以點為頂點的平行四邊形的第四個頂點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案