矩形ABCD中,AB=8,,點(diǎn)P在邊AB上,且BP=3AP,如果圓P是以點(diǎn)P為圓心,PD為半徑的圓,那么下列判斷正確的是
A.點(diǎn)B、C均在圓P外                   B.點(diǎn)B在圓P外、點(diǎn)C在圓P內(nèi)
C.點(diǎn)B在圓P內(nèi)、點(diǎn)C在圓P外            D.點(diǎn)B、C均在圓P內(nèi)
C

試題分析:矩形ABCD中,AB=8,,點(diǎn)P在邊AB上,且BP=3AP,∴AP=2,BP="6,AD=BC." 如果圓P是以點(diǎn)P為圓心,PD為半徑的圓;在中有勾股定理得
,∵PD=7>BP=6,PD=7<PC=9;∴點(diǎn)B在圓內(nèi),點(diǎn)C在圓外
點(diǎn)評(píng):本題考查點(diǎn)與圓的位置關(guān)系,利用點(diǎn)到圓心的距離與圓半徑的關(guān)系,來(lái)判斷點(diǎn)與圓的位置關(guān)系
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在⊙O中,CD為⊙O的直徑, =,點(diǎn)E為OD上任意一點(diǎn)(不與O、D重合).求證:AE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用一張半徑為24cm的扇形紙片做一個(gè)如圖所示的圓錐形小丑帽子側(cè)面(接縫忽略不計(jì)),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙片的面積是   cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,P(0,2),Q(0,),若⊙P與⊙Q的半徑分別是3和2,則⊙P與⊙Q的位置關(guān)系是(      )
A.內(nèi)含B.外離C.外切D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=9cm,BC=12cm,P為BC的中點(diǎn).動(dòng)點(diǎn)Q從點(diǎn)P出發(fā),沿射線PC方向以2cm/s的速度運(yùn)動(dòng),以P為圓心,PQ長(zhǎng)為半徑作圓.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t s.

(1)求點(diǎn)P到直線AB的距離;
(2)當(dāng)t=1.8時(shí),判斷直線AB與⊙P的位置關(guān)系,并說(shuō)明理由;
(3)已知⊙O為△ABC的外接圓,若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓⊙A的半徑為2,⊙B的半徑為3,圓心A的坐標(biāo)是(0,2),圓心B的坐標(biāo)為(4,-1),則⊙A與⊙B的位置關(guān)系為_(kāi)_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC是⊙O的內(nèi)接三角形,∠C=50°,則∠OAB=    °.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

兩圓的半徑為5和3,若圓心距為7,則兩圓的位置關(guān)系是(     )
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AC.

⑴請(qǐng)你在所給的網(wǎng)格中畫(huà)出線段AC及點(diǎn)B經(jīng)過(guò)的路徑;
⑵若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2, -1),則點(diǎn)C的坐標(biāo)為       ;
⑶線段AB在旋轉(zhuǎn)到線段AC的過(guò)程中,線段AB掃過(guò)的區(qū)域的面積為       ;
⑷若有一張與⑶中所說(shuō)的區(qū)域形狀相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑長(zhǎng)為        .

查看答案和解析>>

同步練習(xí)冊(cè)答案