如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于點(diǎn)D、E兩點(diǎn).

(1)如果一個(gè)二次函數(shù)圖象經(jīng)過(guò)B、C、D三點(diǎn),求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)P的坐標(biāo)為(m,0)(m>5),過(guò)點(diǎn)P作x軸交(1)中的拋物線(xiàn)于點(diǎn)Q,當(dāng)以為頂點(diǎn)的三角形與相似時(shí),求點(diǎn)P的坐標(biāo).
(1);(2)

試題分析:(1)利用垂徑定理求得線(xiàn)段OB和OC的長(zhǎng),從而求得B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求得二次函數(shù)的解析式即可;
(2)作出圖形利用相似三角形的對(duì)應(yīng)邊成比例列出有關(guān)未知數(shù)m的方程求解即可.
(1)連接AC,

∵以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于D、E兩點(diǎn).
∴AC=5、AO=3,
∴由勾股定理得:OC=OB=4
∴點(diǎn)B的坐標(biāo)為(-4,0),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)D的坐標(biāo)為(0,2).
∵對(duì)稱(chēng)軸為y軸,
∴設(shè)二次函數(shù)的解析式為y=ax2+c


∴經(jīng)過(guò)B、C、D三點(diǎn)的二次函數(shù)的解析式為;
(2)∵P的坐標(biāo)為(m,0)(m>5),
∴Q點(diǎn)的坐標(biāo)為(m,
∴PC=m-4,PQ=
∵以O(shè)、C、D為頂點(diǎn)的三角形與△PCQ相似,
①當(dāng)△ODC∽△PCQ時(shí),


解得:m=12或m=4(因m>5,故舍去)
②當(dāng)△OCD∽△PCQ時(shí),


解得:m=0或4(因m>5,故舍去)
∴P點(diǎn)的坐標(biāo)為:(12,0).
點(diǎn)評(píng):此類(lèi)問(wèn)題綜合性強(qiáng),難度較大,在中考中比較常見(jiàn),題目比較典型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=x2+bx-2與x軸交于A、B兩點(diǎn),與y 軸交于C點(diǎn),且A(一1,0).

(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)若將上述拋物線(xiàn)先向下平移3個(gè)單位,再向右平移2個(gè)單位,請(qǐng)直接寫(xiě)出平移后的拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)圖像向左平移2個(gè)單位,向下平移1個(gè)單位后得到二次函數(shù)的圖像,則二次函數(shù)的解析式為_(kāi)___    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+6x+c的圖象經(jīng)過(guò)點(diǎn)A(4,0)、B(﹣1,0),與y軸交于點(diǎn)C,點(diǎn)D在線(xiàn)段OC上,OD=t,點(diǎn)E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足為F.

(1)求這個(gè)二次函數(shù)的解析式;
(2)求線(xiàn)段EF、OF的長(zhǎng)(用含t的代數(shù)式表示);
(3)當(dāng)△ECA為直角三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,半徑為2的⊙C與軸的正半軸交于點(diǎn)A,與軸的正半軸交于點(diǎn)B,點(diǎn)C的坐標(biāo)為(1,0),若拋物線(xiàn)過(guò)A、B兩點(diǎn)。

(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)上是否存在P,使得∠PBO=∠POB?若存在,求出點(diǎn)P的坐標(biāo);若不存在說(shuō)明理由;
(3)若點(diǎn)M是拋物線(xiàn)(在第一象限內(nèi)的部分)上一點(diǎn),△MAB的面積為S,求S的最大(。┲。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,直線(xiàn)交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.

(1)求b的值;
(2)若點(diǎn)P是線(xiàn)段AB中垂線(xiàn)上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形.若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

向空中發(fā)射一枚炮彈,經(jīng)x秒后的高度為y米,且時(shí)間與高度的關(guān)系為y=ax2+bx+c(a≠0).若此炮彈在第7秒與第14秒時(shí)的高度相等,則在下列時(shí)間中炮彈所在高度最高的是
A.第8秒B.第10秒C.第12秒D.第15秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,將拋物線(xiàn)先向右平移兩個(gè)單位,再向上平移兩個(gè)單位,得到的拋物線(xiàn)的函數(shù)關(guān)系式是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)軸于A、B兩點(diǎn),交軸于點(diǎn)C,
點(diǎn)P是它的頂點(diǎn),點(diǎn)A的橫坐標(biāo)是3,點(diǎn)B的橫坐標(biāo)是1.

(1)求的值;
(2)求直線(xiàn)PC的解析式;
(3)請(qǐng)?zhí)骄恳渣c(diǎn)A為圓心、直徑為5的圓與直線(xiàn)PC的位置關(guān)系,并說(shuō)明理由.
(參考數(shù)據(jù),

查看答案和解析>>

同步練習(xí)冊(cè)答案