【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ x2+bx+c與x軸交于A,B兩點(diǎn),其中B(6,0),與y軸交于點(diǎn)C(0,8),點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)C重合).
(1)求拋物線的表達(dá)式;
(2)過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E,點(diǎn)E關(guān)于直線PC的對(duì)稱點(diǎn)為E′,若點(diǎn)E′落在y軸上(不與點(diǎn)C重合),請(qǐng)判斷以P,C,E,E′為頂點(diǎn)的四邊形的形狀,并說明理由;
(3)在(2)的條件下直接寫出點(diǎn)P的坐標(biāo).
【答案】
(1)
解:把點(diǎn)C(0,8),B(6,0)代入在拋物線y=﹣ x2+bx+c得 ,解得 ,
所以拋物線的表達(dá)式為y=﹣ x2+ x+8
(2)
解:以P,C,E,E′為頂點(diǎn)的四邊形為菱形.理由如下:
∵E點(diǎn)和E′點(diǎn)關(guān)于直線PC對(duì)稱,
∴∠E′CP=∠ECP,E′C=CE,E′P=EP,
又∵PD⊥x軸,
∴PE∥E′C,
∴∠EPC=∠E′CP,
∴∠EPC=∠ECP,
∴EP=EC,
∴EC=EP=PE′=E′C,
∴四邊形EPE′C為菱形
(3)
解:設(shè)直線BC的解析式為y=kx+m,
把B(6,0),C(0,8)代入得 ,解得 ,
∴直線BC的解析式為y=﹣ x+8;
設(shè)P(x,﹣ x2+ x+8),則E(x,﹣ x+8),
∴PE=﹣ x2+ x+8﹣(﹣ x+8)=﹣ x2+4x,
過點(diǎn)E作EF⊥y軸于點(diǎn)F,如圖,
在Rt△OBC中,BC= =10,
∵EF∥OB,
∴△CFE∽△COB,
∴ = ,即 = ,
∴CE= x,
∵EC=EP,
∴﹣ x2+4x= x,
整理得2x2﹣7x=0,解得x1=0(舍去),x2= ,
∴點(diǎn)P的坐標(biāo)為( , ).
【解析】(1)利用待定系數(shù)法求二次函數(shù)解析式;(2)利用對(duì)稱的性質(zhì)得∠E′CP=∠ECP,E′C=CE,E′P=EP,由PE∥E′C得∠EPC=∠E′CP,則∠EPC=∠ECP,于是可判斷EP=EC,所以EC=EP=PE′=E′C,則根據(jù)菱形的判定方法得到四邊形EPE′C為菱形;(3)先利用待定系數(shù)法求出直線BC的解析式為y=﹣ x+8,根據(jù)二次函數(shù)和一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè)P(x,﹣ x2+ x+8),則E(x,﹣ x+8),則可計(jì)算出PE=﹣ x2+ x+8﹣(﹣ x+8)=﹣ x2+4x,過點(diǎn)E作EF⊥y軸于點(diǎn)F,如圖,證明△CFE∽△COB,利用相似比可計(jì)算出CE= x,則可利用EC=EP得到方程﹣ x2+4x= x,然后解方程求出x即可得到P點(diǎn)坐標(biāo).
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 m≥2,n≥2,且 m、n 均為正整數(shù),如果將 mn 進(jìn)行如圖所示的“分解”,那么下列四個(gè)敘述中正確的有( )
①在 25 的“分解”結(jié)果是 15和17兩個(gè)數(shù).
②在 42 的“分解”結(jié)果中最大的數(shù)是9.
③若 m3 的“分解”結(jié)果中最小的數(shù)是 23,則 m=5.
④若 3n 的“分解”結(jié)果中最小的數(shù)是 79,則 n=5.
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn):如圖1,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD.(S表示面積)
實(shí)驗(yàn)探究:某數(shù)學(xué)實(shí)驗(yàn)小組發(fā)現(xiàn):若圖1中AH≠BF,點(diǎn)G在CD上移動(dòng)時(shí),上述結(jié)論會(huì)發(fā)生變化,分別過點(diǎn)E、G作BC邊的平行線,再分別過點(diǎn)F、H作AB邊的平行線,四條平行線分別相交于點(diǎn)A1、B1、C1、D1,得到矩形A1B1C1D1.
如圖2,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+.
如圖3,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)D靠近(DG<AE),請(qǐng)?zhí)剿?/span>S四邊形EFGH、S矩形ABCD與之間的數(shù)量關(guān)系,并說明理由.
遷移應(yīng)用:
請(qǐng)直接應(yīng)用“實(shí)驗(yàn)探究”中發(fā)現(xiàn)的結(jié)論解答下列問題:
如圖4,點(diǎn)E、F、G、H分別是面積為25的正方形ABCD各邊上的點(diǎn),已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù) (k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)F為BC的中點(diǎn),且S△AOF=12 時(shí),OA的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動(dòng),為了解全校植樹情況,對(duì)該校甲、乙、丙、丁四個(gè)班級(jí)植樹的棵樹和所占百分比情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:
(1)這四個(gè)班共植樹 棵;
(2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若四個(gè)班級(jí)植樹的平均成活率是95%,全校共植樹2000棵,請(qǐng)你估計(jì)全校種植的樹中成活的樹大約有多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(﹣2,0),點(diǎn)B(0,﹣4),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y= 經(jīng)過C,D兩點(diǎn)且D(a,8)、C(4,b).
(1)求a、b、k的值;
(2)如圖2,點(diǎn)P在雙曲線y= 上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試直接寫出滿足要求的所有點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請(qǐng)直接寫出點(diǎn)B關(guān)于點(diǎn)A對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com