【題目】我省中小學積極開展綜合實踐活動,某校準備組織開展四項綜合實踐活動:“A.我是非遺小傳人,B.學做家常餐,C.愛心義賣行動,D.找個崗位去體驗”.為了解學生最喜愛哪項綜合實踐活動,隨機抽取部分學生進行問卷調(diào)查(每位學生只能選擇一項),將調(diào)查結果繪制成下面兩幅不完整的統(tǒng)計圖,請結合圖中提供的信息回答下列問題:

(1)本次一共調(diào)查了 名學生,在扇形統(tǒng)計圖中,m的值是 ;

(2)補全條形統(tǒng)計圖;

(3)若該校共有1200名學生,估計最喜愛BC項目的學生一共有多少名?

(4)現(xiàn)有最喜愛A,B,C,D活動項目的學生各一人,學校要從這四人中隨機選取兩人交流活動體會,請用列表或畫樹狀圖的方法求出恰好選取最喜愛CD項目的兩位學生的概率.

最喜愛各項綜合實踐活動條形統(tǒng)計圖 最喜愛各項綜合實踐活動扇形統(tǒng)計圖

【答案】(1)200,20%;(2)詳見解析;(3)840;(4).

【解析】

(1)用喜歡A項目的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);用100%減去其它項目所占的百分比,即可求出m的值;
(2)用總?cè)藬?shù)乘以C項目所占的百分比,求出C項目的人數(shù),從而補全統(tǒng)計圖;
(3)用該校的總?cè)藬?shù)乘以喜愛BC項目的學生所占的百分比即可;
(4)畫樹狀圖展示所有12種等可能的結果數(shù),再找出最喜愛CD項目的兩位學生的結果數(shù),然后根據(jù)概率公式求解.

:(1)本次共調(diào)查的學生數(shù)是:20÷10%=200(人),
m=100%-10%-45%-25%=20%;
故答案為:200,20%;
(2)C項目的人數(shù)是:200×25%=50(人),補圖如下:

(3)根據(jù)題意得:
1200×(45%+25%)=840(名),
答:最喜愛BC項目的學生一共有840名;
(4)畫樹狀圖為:

共有12種等可能的結果數(shù),恰好選取最喜愛CD項目的兩位學生的結果數(shù)為2種,
所以恰好選取最喜愛CD項目的兩位學生的概率=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x與雙曲線y= (k>0,x>0)交于點A,將直線y=x向上平移4個單位長度后y軸交于點C,與雙曲線y= (k>0,x>0)交于點B,OA=3BC,k的值為(   )

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 在平面直角坐標系xOy中,點A1,A2,A3,···和B1,B2,B3,···分別在直線和x軸上.OA1B1,B1A2B2,B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,那么點的縱坐標是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校一幢教學大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i1:,AB=10,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時間t(min)的函數(shù)圖象.

(1)直接寫出小明所走路程s與時間t的函數(shù)關系式;

(2)小明出發(fā)多少時間與爸爸第三次相遇?

(3)在速度都不變的情況下,小明希望比爸爸早20 min到達公園,則小明在步行過程中停留的時間需作怎樣的調(diào)整?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點F,點EAB的延長線上,射線EM經(jīng)過點C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結果保留和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】霧霾天氣持續(xù)籠罩我國大部分地區(qū),困擾著廣大市民的生活,口罩市場出現(xiàn)熱銷,小明的爸爸用12000元購進甲、乙兩種型號的口罩在自家商店銷售,銷售完后共獲利2700元,進價和售價如表:

1)小明爸爸的商店購進甲、乙兩種型號口罩各多少袋?

2)該商店第二次以原價購進甲、乙兩種型號口罩,購進甲種型號口罩袋數(shù)不變,而購進乙種型號口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號的口罩全部售完,要使第二次銷售活動獲利不少于2460元,每袋乙種型號的口罩最多打幾折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點F,點EAB的延長線上,射線EM經(jīng)過點C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結果保留和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計,形狀均為正方形,邊長在10~30dm之間.每張畫板的成本價(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與畫板的大小無關,是固定不變的.浮動價與畫板的邊長成正比例.在營銷過程中得到了表格中的數(shù)據(jù).

畫板的邊長(dm)

10

20

出售價(元/張)

160

220

(1)求一張畫板的出售價與邊長之間滿足的函數(shù)關系式;

(2)已知出售一張邊長為30dm的畫板,獲得的利潤為130元(利潤=出售價-成本價),

①求一張畫板的利潤與邊長之間滿足的函數(shù)關系式;

②當邊長為多少時,出售一張畫板所獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案