【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來(lái)三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的“等角分割線”.
例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條“等角分割線”.
(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD為△ABC的“等角分割線”;
(2)如圖2,△ABC中,∠C=90°,∠B=30°;
①畫(huà)出△ABC的“等角分割線”,寫(xiě)出畫(huà)法并說(shuō)明理由;
②若BC=3,求出①中畫(huà)出的“等角分割線”的長(zhǎng)度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割線”CD,直接寫(xiě)出所有符合要求的∠B的度數(shù).
【答案】(1)見(jiàn)解析(2)①見(jiàn)解析②2(3)44°, 52°, 54°, 108°
【解析】
⑴根據(jù)題目中的已知角的度數(shù)可以得到∠BAD=∠C=40°,∠ADB=∠BAC=110°
又∠B=∠B,得出△ABD的三個(gè)內(nèi)角與△ABC的三個(gè)內(nèi)角的度數(shù)分別相等;根據(jù)三角形的外角求出∠ADC=70°,∠BAD+∠CAD=110°得到∠CAD=70°得出△ADC是等腰三角形,所以AD為△ABC的“等角分割線”.
⑵①依據(jù)“等角分割線”定義畫(huà)出即可,②AD平分∠BAC, ∠ACD=30°,設(shè)CD=x,則AD=BD=2x,BC=BD+CD=2x+x=3,即可求出AD=2x=2
⑶分△ACD是等腰三角形DA=DC,DA=AC和△BCD是等腰三角形DB=BC,DC=BD四種情況,根據(jù)內(nèi)角和定理及三角形外角等于與它不相鄰的兩個(gè)內(nèi)角的和計(jì)算即可.
(1)證明:∵∠B=30°,∠BAD=∠C=40°
∴∠ADB=∠BAC=110°
又∠B=∠B,
∴△ABD的三個(gè)內(nèi)角與△ABC的三個(gè)內(nèi)角的度數(shù)分別相等,
∵∠B=30°,∠BAD=40°,
∴∠ADC=∠B+∠BAD=70°
又∵∠C=40°
∴∠DAC=70°=∠ADC
∴AC=CD
∴△ADC是等腰三角形,
∴AD為△ABC的“等角分割線”
(2)①畫(huà)法:如圖2,畫(huà)∠BAC的角平分線,交BC于點(diǎn)D,線段AD即為所求,
理由如下:
∵∠C=90°,∠B=30°
∴∠BAC=60°
∵AD平分∠BAC
∴∠DAC =∠BAD =30°=∠B
∴∠ADC=60°=∠BAC
又∵∠C=∠C=90°
∴△ADC的三個(gè)內(nèi)角與△ABC的三個(gè)內(nèi)角的度數(shù)分別相等,
∵∠BAD=∠B
∴AD=BD
∴△ABD是等腰三角形,
∴AD為△ABC△ABC的“等角分割線”
②設(shè)CD=x
∵△ADC中,∠C=90°,∠DAC=30°,
∴AD=2x,
∴BD=AD=2x
∵BC=3
∴x+2x=3
∴x=1
∴AD=2x=2;
(3) ①當(dāng)△BCD為等腰三角形,DB=BC時(shí),如下圖
∵DB=BC,△ABC∽△ACD
∴ ∠2=∠3,∠1=∠B
∵∠2=∠A+∠1,∠2+∠3+∠B=180°
∴ 2(∠A+∠1)+∠B=180°
∴ 2(24°+∠B)+∠B=180°
∴ ∠B=44°
②當(dāng)△BCD是等腰三角形,DB=DC時(shí),如下圖
∵DB=DC,△ABC∽△ACD
∴∠B=∠2,∠1=∠B
∵ ∠3=∠2+∠B,∠A+∠1+∠3=180°
∴ ∠A+∠1+∠3=24°+∠B+∠B+∠B=180°
∴ ∠B=52°
③當(dāng)△ACD為等腰三角形,DA=CA時(shí),如下圖
∠2+∠3=180°-∠A=180°-24°=156°
∠2=∠3=78°
∵△ABC∽△CBD
∴∠A=∠4=24°
∵ ∠B+∠4=∠3
∴∠B=54°
當(dāng)△ACD為等腰三角形,DA=DC時(shí),如下圖
∵ DA=DC
∴ ∠A=∠1=24°
∴ ∠2=∠A+∠1=48°
∵△ABC∽△CBD
∴ ∠B=∠2+∠3=∠2+∠A=108°
44°, 52°, 54°, 108°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A′處,且A′B平分∠ABC,A′C平分∠ACB,若∠BA′C=110°,則∠1+∠2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列動(dòng)車從甲地開(kāi)往乙地,一列普通列車從乙地開(kāi)往甲地,兩車同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為(小時(shí)),兩車之間的距離為(千米),圖中的折線表示與之間的函數(shù)關(guān)系。
根據(jù)圖象回答下列問(wèn)題:
(1)甲地與乙地相距______千米,兩車出發(fā)后______小時(shí)相遇;
(2)普通列車到達(dá)終點(diǎn)共需_______小時(shí),普通列車的速度是______千米/小時(shí);
(3)動(dòng)車的速度是________千米/小時(shí);
(4)的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=3,AD=6,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰落在矩形ABCD的對(duì)稱軸上,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從A地到B地的公路需要經(jīng)過(guò)C地,根據(jù)規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的長(zhǎng)(結(jié)果精確到0.1千米)
(參考數(shù)據(jù):sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形,是中線,延長(zhǎng)至點(diǎn),使.
(1)求證:;
(2)尺規(guī)作圖:過(guò)點(diǎn)作垂直于,垂足為;(保留作圖留痕跡,不寫(xiě)作法)
(3)若,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點(diǎn)D在直線BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),點(diǎn)E在射線AC上運(yùn)動(dòng),且∠ADE=∠AED,設(shè)∠DAC=n.
(1)如圖(1),當(dāng)點(diǎn)D在邊BC上時(shí),且n=36°,則∠BAD= _________,∠CDE= _________.
(2)如圖(2),當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),其他條件不變,請(qǐng)猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)畫(huà)出圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+b分別與x軸、y軸交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),過(guò)點(diǎn)B的另一條直線交x軸負(fù)半軸于點(diǎn)C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo)及直線BC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)在線段OB上存在點(diǎn)P,使得點(diǎn)P到點(diǎn)B,C的距離相等,試求出點(diǎn)P的坐標(biāo);
(3)如果在x軸上方存在點(diǎn)D,使得以點(diǎn)A,B,D為頂點(diǎn)的三角形與△ABC全等,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com