已知拋物線(xiàn)y=ax2+x+c(a≠0)經(jīng)過(guò)A(﹣1,0),B(2,0)兩點(diǎn),與y軸相交于點(diǎn)C,該拋物線(xiàn)的頂點(diǎn)為點(diǎn)M,對(duì)稱(chēng)軸與BC相交于點(diǎn)N,與x軸交于點(diǎn)D.
(1)求該拋物線(xiàn)的解析式及點(diǎn)M的坐標(biāo);
(2)連接ON,AC,證明:∠NOB=∠ACB;
(3)點(diǎn)E是該拋物線(xiàn)上一動(dòng)點(diǎn),且位于第一象限,當(dāng)點(diǎn)E到直線(xiàn)BC的距離為時(shí),求點(diǎn)E的坐標(biāo);
(4)在滿(mǎn)足(3)的條件下,連接EN,并延長(zhǎng)EN交y軸于點(diǎn)F,E、F兩點(diǎn)關(guān)于直線(xiàn)BC對(duì)稱(chēng)嗎?請(qǐng)說(shuō)明理由.
(1)拋物線(xiàn)為y=﹣x2+x+2=﹣(x﹣2+,頂點(diǎn)M(,).
證明見(jiàn)解析
(3)E(1,2),
(4)對(duì)稱(chēng);理由見(jiàn)解析

試題分析:(1)由待定系數(shù)法可求得解析式,然后轉(zhuǎn)化成頂點(diǎn)式即可得頂點(diǎn)坐標(biāo).
有兩組對(duì)應(yīng)邊對(duì)應(yīng)成比例且?jiàn)A角相等即可知△ABC∽△NBO,由三角形相似的性質(zhì)即可求得.
作EF⊥BC于F,根據(jù)拋物線(xiàn)的解析式先設(shè)出E點(diǎn)的坐標(biāo),然后根據(jù)兩直線(xiàn)垂直的性質(zhì)求得F點(diǎn)的坐標(biāo),根據(jù)勾股定理即可求得.
(4)延長(zhǎng)EF交y軸于Q,根據(jù)勾股定理求得FQ的長(zhǎng),再與EF比較即可.
試題解析:(1)∵拋物線(xiàn)y=ax2+x+c(a≠0)經(jīng)過(guò)A(﹣1,0),B(2,0)兩點(diǎn),

解得
∴拋物線(xiàn)為y=﹣x2+x+2;
∴拋物線(xiàn)為y=﹣x2+x+2=﹣(x﹣2+
∴頂點(diǎn)M().
如圖1,

∵A(﹣1,0),B(2,0),C(0,2),
∴直線(xiàn)BC為:y=﹣x+2,
當(dāng)x=時(shí),y=,
∴N(,),
∴AB=3,BC=2,OB=2,BN=,
,,
∵∠ABC=∠NBO,
∴△ABC∽△NBO,
∴∠NOB=∠ACB;
(3)如圖2,作EF⊥BC于F,
∵直線(xiàn)BC為y=﹣x+2,
∴設(shè)E(m,﹣m2+m+2),直線(xiàn)EF的解析式為y=x+b,
則直線(xiàn)EF為y=x+(﹣m2+2),
 得,
∴F(m2,﹣m2+2),
∵EF=,
∴(m﹣m22+(﹣m2+2+m2﹣m﹣2)2=(2,
解得m=1,
∴﹣m2+m+2=2,
∴E(1,2),

(4)如圖2,延長(zhǎng)EF交y軸于Q,
∵m=1,
∴直線(xiàn)EF為y=x+1,
∴Q(0,1),
∵F(,),
∴FQ=,
∵EF=,EF⊥BC,
∴E、F兩點(diǎn)關(guān)于直線(xiàn)BC對(duì)稱(chēng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=x2+bx+c的圖象如圖所示,則函數(shù)值y<0時(shí),對(duì)應(yīng)x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過(guò)程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=    時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過(guò)定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過(guò)點(diǎn)R作x軸、y軸的平行線(xiàn),分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)D在拋物線(xiàn)上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點(diǎn)P為拋物線(xiàn)上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)
A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請(qǐng)直接寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△APC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線(xiàn)段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過(guò)點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,若拋物線(xiàn)Y=X2  改為拋物線(xiàn)Y= X2+BX+C 其他條件不變  求矩形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

福娃們?cè)谝黄鹛接懷芯肯旅娴念}目:函數(shù)y=x2-x+m(m為常數(shù))的圖象如圖,如果x=a時(shí),y<0;那么x=a-1時(shí),函數(shù)值是多少?
貝貝:我注意到當(dāng)x=0時(shí),y=m>0.
晶晶:我發(fā)現(xiàn)圖象的對(duì)稱(chēng)軸為x=
1
2

歡歡:我判斷出x1<a<x2
迎迎:我認(rèn)為關(guān)鍵要判斷a-1的符號(hào).
妮妮:M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y}可以取一個(gè)特殊的值.
參考上面福娃們的討論,請(qǐng)你解該題,你選擇的答案是( 。
A.y<0B.0<y<mC.y>mD.y=m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),現(xiàn)將△PCD沿直線(xiàn)PD折疊,使點(diǎn)C落下點(diǎn)C′處;作∠BPC′的平分線(xiàn)交AB于點(diǎn)E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知二次函數(shù) =,當(dāng)<<時(shí), 的增大而增大,則實(shí)數(shù)a的取值范圍是  (  )
A.>B.<C.>0D.<<

查看答案和解析>>

同步練習(xí)冊(cè)答案