【題目】如圖,ABE、ADCABC分別是關于AB,AC邊所在直線的軸對稱圖形,若∠1:∠2:∠3=721,則∠α的度數(shù)為(  。

A.126°B.110°C.108°D.90°

【答案】C

【解析】

根據(jù)題意可設∠1=7x,∠2=2x,∠3=x,即可得到∠1,∠2,∠3,再利用三角形外角的性質(zhì)得到∠EAC=108°,最后根據(jù)三角形的內(nèi)角和定理計算即可.

∵∠1:2:3=7:2:1,

∴設∠1=7x,∠2=2x,∠3=x

由∠1+2+3=180°得:

7x+2x+x=180°,

解得x=18,

故∠1=7×18=126°,2=2×18=36°,3=1×18=18°,

∵△ABE和△ADC是△ABC分別是關于AB,AC邊所在直線的軸對稱圖形,

∴∠DCA=E=3=18°,2=EBA=D=36°,4=EBA+E=36°+18°=54°,

5=2+3=18°+36°=54°,

故∠EAC=4+5=54°+54°=108°

在△EGF與△CAF中,∠E=DCA,∠DFE=CFA,

∠α=EAC=108°.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】垃圾分一分,環(huán)境美十分”.甲、乙兩城市產(chǎn)生的不可回收垃圾需運送到、兩垃圾場進行處理,其中甲城市每天產(chǎn)生不可回收垃圾噸,乙城市每天產(chǎn)生不可回收垃圾噸。、兩垃圾場每天各能處理噸不可回收垃圾。從垃圾處理場到甲城市千米,到乙城市千米;從垃圾處理場到甲城市千米,到乙城市千米。

1)請設計一個運輸方案使垃圾的運輸量(噸.千米)盡可能。

2)因部分道路維修,造成運輸量不低于噸,請求出此時最合理的運輸方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直線上順次取A,B,C三點,使得AB40cm,BC280cm,點P、點Q分別由A、B點同時出發(fā)向點C運動,點P的速度為3cm/s,點Q的速度為lcm/s

1)如果點D是線段AC的中點,那么線段BD的長是   cm

2求點P出發(fā)多少秒后追上點Q;

直接寫出點P出發(fā)   秒后與點Q的距離是20cm;

3)若點E是線段AP中點,點F是線段BQ中點,則當點P出發(fā)   秒時,點B,點E,點F,三點中的一個點是另外兩個點所在線段的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級班有人,班比班人數(shù)的2倍少8人,如果從班調(diào)出6人到.

1)用代數(shù)式表示兩個班共有多少人?

2)用代數(shù)式表示調(diào)動后,班人數(shù)比班人數(shù)多幾人?

3等于多少時,調(diào)動后兩班人數(shù)一樣多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上的一點,ODOC,過點O作射線OE平分∠BOC.

(1)如圖1,如果∠AOC=50°,依題意補全圖形,寫出求∠DOE度數(shù)的思路(不需要寫出完整的推理過程);

(2)OD繞點O順時針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,依題意補全圖形,并求∠DOE的度數(shù)(用含α的代數(shù)式表示);

(3)OD繞點O繼續(xù)順時針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤∠AOC180°,0°≤∠DOE180°)之間有怎樣的數(shù)量關系?請直接寫出你的發(fā)現(xiàn).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201911月銅陵舉辦了國際半程馬拉松比賽,吸引了大批運動愛好者.某商場看準時機,想訂購一批款運動鞋,現(xiàn)有甲,乙兩家供應商,它們均以每雙元的價格出售款運動鞋,其中供應商甲一律九折銷售, 與購買數(shù)量無關;而供應商乙規(guī)定:購買數(shù)量在雙以內(nèi)(包含),以每雙200元的原價出售,當購買數(shù)量超出雙時,其超出部分按原價的八折出售.問:

某商場購買多少雙時,去兩個供應商處的進貨價錢一樣多?

若該商場分兩次購買運動鞋,第一次購進雙,第二次購進的數(shù)量是第次的倍多雙,如果你是商場經(jīng)理,在兩次分開購買的情況下,你預計花多少元采購運動鞋,才能使得商場花銷最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角形AOB中,O為坐標原點,∠AOB=90°,B=30°,若點A在反比例函數(shù)y= (x>0)圖像上運動,那么點B必在函數(shù)( )的圖像上運動.

A B. C. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設∠BAC= ,∠DCE=

① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究之間的數(shù)量關系,并證明你的結(jié)論;

② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時之間的數(shù)量關系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校七年級學生對(極限挑戰(zhàn)); (奔跑吧),(王牌對王牌); (向往的生活)四個點數(shù)節(jié)目的喜愛情況,某調(diào)查組從該校七年級學生中隨機抽取了位學生進行調(diào)查統(tǒng)計(要求每位選出并且只能選一個自己喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2).根據(jù)以上信息,回答下列問題:

1_____________,________________;

2)在圖1中,喜愛(奔跑吧)節(jié)目所對應的扇形的圓心角的度數(shù)是___________;

3)請根據(jù)以上信息補全圖2的條形統(tǒng)計圖;

4)已知該校七年級共有540名學生,那么他們當中最喜愛(王牌對王牌)這個節(jié)目的學生有多少人?

查看答案和解析>>

同步練習冊答案