(2012•廣州)在Rt△ABC中,∠C=90°,AC=9,BC=12,則點(diǎn)C到AB的距離是( 。
分析:根據(jù)題意畫出相應(yīng)的圖形,如圖所示,在直角三角形ABC中,由AC及BC的長,利用勾股定理求出AB的長,然后過C作CD垂直于AB,由直角三角形的面積可以由兩直角邊乘積的一半來求,也可以由斜邊AB乘以斜邊上的高CD除以2來求,兩者相等,將AC,AB及BC的長代入求出CD的長,即為C到AB的距離.
解答:解:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:

在Rt△ABC中,AC=9,BC=12,
根據(jù)勾股定理得:AB=
AC2+BC2
=15,
過C作CD⊥AB,交AB于點(diǎn)D,
又S△ABC=
1
2
AC•BC=
1
2
AB•CD,
∴CD=
AC•BC
AB
=
9×12
15
=
36
5
,
則點(diǎn)C到AB的距離是
36
5

故選A
點(diǎn)評(píng):此題考查了勾股定理,點(diǎn)到直線的距離,以及三角形面積的求法,熟練掌握勾股定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)在平面中,下列命題為真命題的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,⊙P的圓心為P(-3,2),半徑為3,直線MN過點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.
(1)在圖中作出⊙P關(guān)于y軸對(duì)稱的⊙P′.根據(jù)作圖直接寫出⊙P′與直線MN的位置關(guān)系.
(2)若點(diǎn)N在(1)中的⊙P′上,求PN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時(shí),求CE的長;
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案