【題目】如圖,的角平分線,分別是的高,連接.下列結(jié)論:①垂直平分;②垂直平分;③平分;④當(dāng)時,,其中不正確的結(jié)論的個數(shù)為(

A.B.C.D.

【答案】A

【解析】

根據(jù)角平分線性質(zhì)求出DE=DF,根據(jù)HL可證△AED≌△AFD,即可推出AE=AF,再逐個判斷即可.

:AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,

DE=DF,AED=AFD=90° ,

RtAEDRtAFD,

RtAEDRtAFD(HL)

AE=AF,ADE=ADF,

AD平分∠EDF;③正確;

AE=AF,DE=DF,

AD垂直平分EF,①正確;②錯誤,

∵∠BAC=60°,

∴∠DAE=30°,

,

AG=3DG,④正確.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班“2016年聯(lián)歡會中,有一個摸獎游戲:有4張紙牌,背面都是喜羊羊頭像,正面有2張是笑臉,2張是哭臉,現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.

(1)現(xiàn)在小芳和小霞分別有一次翻牌機會,若正面是笑臉,則小芳獲獎;若正面是哭臉,則小霞獲獎,她們獲獎的機會相同嗎?判斷并說明理由.

(2)如果小芳、小明都有翻兩張牌的機會.翻牌規(guī)則:小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)笑臉就獲獎.請問他們獲獎的機會相等嗎?判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,點開始沿折線的速度運動,點開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當(dāng)其中一點到達時,另一點也隨之停止運動,設(shè)運動時間為,當(dāng)________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(M不與B、C重合),過點CCN垂直DMAB于點N,連結(jié)OM、ON、MN.下列五個結(jié)論:①△CNB≌△DMC;;ONOM;AB=2,則的最小值是1;.其中正確結(jié)論是_________.(只填番號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).

(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標(biāo);

(Ⅱ)設(shè)點Q在第一象限的拋物線上,若其關(guān)于原點的對稱點Q′也在拋物線上,求點Q的坐標(biāo);

(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于、兩點(點在點的左邊),與軸交于點,連接

、三點的坐標(biāo)及拋物線的對稱軸;

若已知軸上一點,則在拋物線的對稱軸上是否存在一點,使得是直角三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】植樹節(jié)期間,小王、小李兩人想通過摸球的方式來決定誰去參加學(xué)校植樹活動,規(guī)則如下:在兩個盒子內(nèi)分別裝入標(biāo)有數(shù)字1,2,3,4的四個和標(biāo)有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.

(1)用樹狀圖或列表法求出小王去的概率;

(2)小李說:這種規(guī)則不公平,你認同他的說法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用5500元購進甲、乙兩種礦泉水共180箱,礦泉水的成本價與銷售價如下表所示:

類別

成本價()

銷售價()

25

35

35

48

求:(1)購進甲、乙兩種礦泉水各多少箱?

(2)該商場售完這180箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AFAB,∠FAB60°,AEAC,∠EAC60°,CFBE交于O點,則下列結(jié)論:①CFBE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB120°,其中正確的有(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案