【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
【答案】
(1)
解:∵四邊形ABCD為矩形,
∴BC=AD=4,CD=AB=3,
當(dāng)運(yùn)動(dòng)x秒時(shí),則AQ=x,BP=x,
∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,
∴S△ADQ= ADAQ= ×4x=2x,S△BPQ= BQBP= (3﹣x)x= x﹣ x2,S△PCD= PCCD= (4﹣x)3=6﹣ x,
又S矩形ABCD=ABBC=3×4=12,
∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣( x﹣ x2)﹣(6﹣ x)= x2﹣2x+6= (x﹣2)2+4,
即S= (x﹣2)2+4,
∴S為開口向上的二次函數(shù),且對(duì)稱軸為x=2,
∴當(dāng)0<x<2時(shí),S隨x的增大而減小,當(dāng)2<x≤3時(shí),S隨x的增大而增大,
又當(dāng)x=0時(shí),S=5,當(dāng)S=3時(shí),S= ,但x的范圍內(nèi)取不到x=0,
∴S不存在最大值,當(dāng)x=2時(shí),S有最小值,最小值為4
(2)
解:存在,理由如下:
由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,
當(dāng)QP⊥DP時(shí),則∠BPQ+∠DPC=∠DPC+∠PDC,
∴∠BPQ=∠PDC,且∠B=∠C,
∴△BPQ∽△PCD,
∴ ,即 ,解得x= (舍去)或x= ,
∴當(dāng)x= 時(shí)QP⊥DP
【解析】(1)可用x表示出AQ、BQ、BP、CP,從而可表示出S△ADQ、S△BPQ、S△PCD的面積,則可表示出S,再利用二次函數(shù)的增減性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,當(dāng)QP⊥DP時(shí),可證明△BPQ∽△CDP,利用相似三角形的性質(zhì)可得到關(guān)于x的方程,可求得x的值.本題為四邊形的綜合應(yīng)用,涉及知識(shí)點(diǎn)有矩形的性質(zhì)、二次函數(shù)的最值、相似三角形的判定和性質(zhì)及方程思想等.在(1)中求得S關(guān)于x的關(guān)系式后,求S的最值時(shí)需要注意x的范圍,在(2)中證明三角形相似是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.
【考點(diǎn)精析】利用二次函數(shù)的最值和矩形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點(diǎn)A,拋物線的對(duì)稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.
(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.
①點(diǎn)B的坐標(biāo)為(),BK的長(zhǎng)是 , CK的長(zhǎng)是
②求點(diǎn)F的坐標(biāo);
③請(qǐng)直接寫出拋物線的函數(shù)表達(dá)式;
(2)將矩形OCDE沿著經(jīng)過點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開始沿線段EH向點(diǎn)H運(yùn)動(dòng),至與點(diǎn)N重合時(shí)停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點(diǎn)M的運(yùn)動(dòng)過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請(qǐng)直接寫出變化范圍;若不變,請(qǐng)直接寫出這個(gè)值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號(hào)油電混合動(dòng)力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.
(1)求每行駛1千米純用電的費(fèi)用;
(2)若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技館對(duì)學(xué)生參觀實(shí)行優(yōu)惠,個(gè)人票為每張6元,另有團(tuán)體票可售,票價(jià)45元,每票最多限10人入館參觀.
(1)如果參觀的學(xué)生人數(shù)36人,至少應(yīng)付多少元?
(2)如果參觀的學(xué)生人數(shù)為48人,至少應(yīng)付多少元?
(3)如果參觀的學(xué)生人數(shù)為一個(gè)兩位數(shù)(a表示十位上的數(shù)字,b表示個(gè)位上的數(shù)字),用含a、b的代數(shù)式表示至少應(yīng)付給科技館的總金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售國(guó)外、國(guó)內(nèi)兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如表所示
國(guó)外品牌 | 國(guó)內(nèi)品牌 | |
進(jìn)價(jià)(萬元/部) | 0.44 | 0.2 |
售價(jià)(萬元/部) | 0.5 | 0.25 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需14.8萬元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.7萬元.[毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量]
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)國(guó)外品牌、國(guó)內(nèi)品牌兩種手機(jī)各多少部?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少國(guó)外品牌手機(jī)的購(gòu)進(jìn)數(shù)量,增加國(guó)內(nèi)品牌手機(jī)的購(gòu)進(jìn)數(shù)量.已知國(guó)內(nèi)品牌手機(jī)增加的數(shù)量是國(guó)外品牌手機(jī)減少的數(shù)量的3倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過15.6萬元,該商場(chǎng)應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)球是一項(xiàng)高雅的體育運(yùn)動(dòng),其中包含了許多物理、幾何學(xué)知識(shí),圖-①是一個(gè)臺(tái)球桌,目標(biāo)球F與本球之間有一個(gè)G球阻擋.
(1)擊球者想通過擊打E球,讓E球先撞球臺(tái)的AB邊,經(jīng)過一次反彈后再撞擊F球,他應(yīng)將E球打到AB邊上的哪一點(diǎn)?請(qǐng)?jiān)趫D10-①中用尺規(guī)作出這一點(diǎn)H,并作出E球的運(yùn)行路線;(不寫畫法,保留作圖痕跡)
(2)如圖-②,現(xiàn)以D為原點(diǎn),建立直角坐標(biāo)系,記A(0,4),C(8,0),E(4,3),F(xiàn)(7,1),求E球按剛才方式運(yùn)行到球的路線長(zhǎng)度(忽略球的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形紙片ABC的面積為48,BC的長(zhǎng)為8.按下列步驟將三角形紙片ABC進(jìn)行裁剪和拼圖:
第一步:如圖1,沿三角形ABC的中位線DE將紙片剪成兩部分.在線段DE上任意取一點(diǎn)F,在線段BC上任意取一點(diǎn)H,沿FH將四邊形紙片DBCE剪成兩部分;
第二步:如圖2,將FH左側(cè)紙片繞點(diǎn)D旋轉(zhuǎn)180°,使線段DB與DA重合;將FH右側(cè)紙片繞點(diǎn)E旋轉(zhuǎn)180°,使線段EC與EA重合,再與三角形紙片ADE拼成一個(gè)與三角形紙片ABC面積相等的四邊形紙片.
圖1 圖2
(1)當(dāng)點(diǎn)F,H在如圖2所示的位置時(shí),請(qǐng)按照第二步的要求,在圖2中補(bǔ)全拼接成的四邊形;
(2)在按以上步驟拼成的所有四邊形紙片中,其周長(zhǎng)的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖案是由六個(gè)全等的直角三角形組成,點(diǎn)O是該圖案的中心,則該圖案可看成由一個(gè)直角三角形繞O點(diǎn)順時(shí)針依次旋轉(zhuǎn)________得到,或可看成由兩個(gè)相鄰的直角三角形繞O點(diǎn)順時(shí)針依次旋轉(zhuǎn)________得到,或可看成由三個(gè)相鄰的直角三角形繞O點(diǎn)旋轉(zhuǎn)________得到.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com