【題目】如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O(shè)為圓心的圓過點(diǎn)C,且與OA交于點(diǎn)E,與OB交于點(diǎn)F,連接CE,CF.
(1)求證:AB與⊙O相切.
(2)若∠AOB=∠ECF,試判斷四邊形OECF的形狀,并說明理由.

【答案】
(1)證明:連接OC,

∵在△ABO中,OA=OB,C是邊AB的中點(diǎn),

∴OC⊥AB,

∵OC為半徑,

∴AB與⊙O相切;


(2)解:四邊形OECF的形狀是菱形,

理由是:

如圖,取圓周角∠M,

則∠M+∠ECF=180°,

由圓周角定理得:∠EOF=2∠M,

∵∠ECF=∠EOF,

∴∠ECF=2∠M,

∴3∠M=180°,

∠M=60°,

∴∠EOF=∠ECF=120°,

∵OA=OB,

∴∠A=∠B=30°,

∴∠EOC=90°﹣30°=60°,

∵OE=OC,

∴△OEC是等邊三角形,

∴EC=OE,

同理OF=FC,

即OE=EC=FC=OF,

∴四邊形OECF是菱形.


【解析】(1)連接OC,根據(jù)三線合一得出OC⊥AB,根據(jù)切線判定推出即可;(2)取圓周角∠M,根據(jù)圓周角定理和圓內(nèi)接四邊形性質(zhì)得出∠M+∠ECF=180°,∠EOF=2∠M,推出∠ECF=2∠M,求出∠M,求出∠EOF,得出等邊三角形OEC,推出OE=EC,同理得出OF=FC,推出OE=OF=FC=EC,根據(jù)菱形判定推出即可.
【考點(diǎn)精析】利用切線的判定定理對題目進(jìn)行判斷即可得到答案,需要熟知切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B、C三個點(diǎn)對應(yīng)的數(shù)分別是a、b、c,滿足|a+24|+|b+10|+(c﹣10)2=0;動點(diǎn)PA出發(fā),以每秒1個單位的速度向終點(diǎn)C移動,設(shè)移動時間為t秒.當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,點(diǎn)QA點(diǎn)出發(fā),以每秒3個單位的速度向C點(diǎn)運(yùn)動,Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動到終點(diǎn)A.在返回過程中,當(dāng)t=_____秒時,P、Q兩點(diǎn)之間的距離為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線BD、AC分別為2、2 ,以B為圓心的弧與AD、DC相切,則陰影部分的面積是( 。

A.2 π
B.4 π
C.4 ﹣π
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對稱,請直接寫出對稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2013年“崇左市初中畢業(yè)升學(xué)體育考試”測試中,參加男子擲實(shí)心球的10名考生的成績記錄如下(單位:米):7.5、6.5、8.2、7.8、8.8、8.2、8.6、8.2、8.5、9.5,則該組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)依次分別是( 。
A.8.2、8.0、7.5
B.8.2、8.5、8.1
C.8.2、8.2、8.15
D.8.2、8.2、8.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3 , …在x軸上,點(diǎn)B1、B2、B3 , …在直線l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均為等邊三角形,則△A5B6A6的周長是( 。

A.24
B.48
C.96
D.192

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=k1x+b交x軸于點(diǎn)A(﹣3,0),交y軸于點(diǎn)B(0,2),并與y= 的圖象在第一象限交于點(diǎn)C,CD⊥x軸,垂足為D,OB是△ACD的中位線.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)若點(diǎn)C′是點(diǎn)C關(guān)于y軸的對稱點(diǎn),請求出△ABC′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)Cy軸的正半軸上,OA=12,OC=9,連接AC.

(1)填空:點(diǎn)A的坐標(biāo):   ;點(diǎn)B的坐標(biāo):   ;

(2)CD平分∠ACO,交x軸于D,求點(diǎn)D的坐標(biāo);

(3)在(2)的條件下,經(jīng)過點(diǎn)D的直線交直線BCE,當(dāng)△CDE為以CD為底的等腰三角形時,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計劃購買甲、乙兩種圖書作為校園讀書節(jié)的獎品,已知甲種圖書的單價比乙種圖書的單價多10元,且購買3本甲種圖書和2本乙種圖書共需花費(fèi)130

(1)甲、乙兩種圖書的單價分別為多少元?

(2)學(xué)校計劃購買這兩種圖書共50本,且投入總經(jīng)費(fèi)不超過1200元,則最多可以購買甲種圖書多少本?

查看答案和解析>>

同步練習(xí)冊答案