【題目】如圖是一塊面積為144cm2的正方形紙片,小欣想沿著邊的方向用它裁出一塊面積為98cm2無拼接的長方形紙片,且使它的長、寬之比為2:1,不知能否裁出來,正在發(fā)愁,小亮看見了說:“肯定能用一塊面積大的紙片裁出一塊面積小的紙片呀!”你同意小亮的觀點(diǎn)嗎?你能用這塊正方形紙片裁出符合要求的長方形紙片嗎?說說你的理由.
【答案】小亮的觀點(diǎn)錯(cuò)誤,不能用這塊正方形的紙片裁剪出符合條件的長方形紙片
【解析】分析:設(shè)長方形的寬為xcm,則長方形的長為2xcm,根據(jù)面積的值列方程求x,長方形的長2x不能大于原正方形的邊長.
詳解:不同意小亮的觀點(diǎn),不能用這塊正方形的紙片裁出符合條件的長方形紙片.
理由是:
設(shè)長方形的寬為xcm,則長方形的長為2xcm,
根據(jù)題意,得:2x2=98,
解得:x=7(負(fù)值舍去),
則長方形的長為2x=14(cm),
∵正方形的邊長為cm,即12cm,
∴14>12,
∴小亮的觀點(diǎn)錯(cuò)誤,不能用這塊正方形的紙片裁剪出符合條件的長方形紙片.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)計(jì)算:
(1)x·x7; (2)a2·a4+(a3)2;
(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組
(1)請(qǐng)直接寫出方程的所有正整數(shù)解
(2)若方程組的解滿足x+y=0,求m的值
(3)無論實(shí)數(shù)m取何值,方程x-2y+mx+5=0總有一個(gè)固定的解,請(qǐng)直接寫出這個(gè)解?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE是△ABC的中位線,延長DE到F,使EF=DE,連接BF
(1)求證:BF=DC;
(2)求證:四邊形ABFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(請(qǐng)?jiān)诶ㄌ?hào)里注明重要的推理依據(jù))
如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成證明并寫出推理根據(jù):
已知,如圖,∠1=132°,∠ACB=48°,∠2=∠3.
求證:∠CDB=∠FHB.
證明:
∵∠1=132°,∠ACB=48° (已知)
∴∠1+∠ACB=180°
∴DE∥BC ( )
∴∠2=∠ ( )
又∵∠2=∠3 (已知)
∴∠3=∠ (等量代換)
∴HF∥DC ( )
∴∠CDB=∠FHB ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論不正確的是( )
A.a<0
B.c>0
C.a+b+c>0
D.b2﹣4ac>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把a(bǔ)、b中較小的數(shù)記作min{a,b},設(shè)函數(shù)f(x)={2,|x﹣2|}.若動(dòng)直線y=m與函數(shù)y=f(x)的圖象有三個(gè)交點(diǎn),它們的橫坐標(biāo)分別為x1、x2、x3 , 則x1x2x3的最大值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com