科目:初中數(shù)學(xué) 來源:2008年湖南省湘潭市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試題及答案 題型:044
閱讀材料:
如果x1,x2是一元二次方程ax2+bx+c=0的兩根,那么有x1+x2=-,x1x2=.這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以用來解題,例x1,x2是方程x2+6x-3=0的兩根,求的值.解法可以這樣:∵x1+x2=-6,x1x2=-3,則=(x1+x2)2-2x1x2=(-6)2-2×(-3)=42.請你根據(jù)以上解法解答下題:
已知x1,x2是方程x2-4x+2=0的兩根,求:
(1)的值;
(2)(x1-x2)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標(biāo),若不存在請說明理由.
【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問題和三角形的綜合應(yīng)用
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆北京市西城區(qū)九年級一模數(shù)學(xué)卷(解析版) 題型:解答題
已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標(biāo),若不存在請說明理由.
【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問題和三角形的綜合應(yīng)用
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀材料:
如果x1、x2是一元二次方程ax2+bx+c=0的兩根,那么有x1+x2=-,x1x2=.
這是一元二次方程根與系數(shù)的關(guān)系,我們可以利用它來解題.例:x1、x2是方程x2+6x-3=0的兩根,求的值.解法可以這樣:
因為x1+x2=-6,x1x2=-3,則=(x1+x2)2-2 x1x2-(-6)2-2×(-3)=42.
請你根據(jù)以上解法解答下題:
已知x1、x2是方程x2-4x+2=0的兩根,求:
(1)的值;
(2)( x1-x2)2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com