【題目】解方程
(1)2x﹣1=3
(2)2(3﹣x)=﹣4x+5
(3) = +1.
【答案】
(1)解:移項(xiàng)合并得:2x=4,
解得:x=2
(2)解:去括號(hào)得:6﹣2x=﹣4x+5,
移項(xiàng)合并得:2x=﹣1,
解得:x=﹣
(3)解:去分母得:3x﹣3=4x+2+12,
移項(xiàng)合并得:﹣x=17,
解得:x=﹣17
【解析】(1)方程移項(xiàng)合并,把x系數(shù)化為1,即可求出解;(2)方程去括號(hào),移項(xiàng)合并,把x系數(shù)化為1,即可求出解;(3)方程去分母,去括號(hào),移項(xiàng)合并,把x系數(shù)化為1,即可求出解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解一元一次方程的步驟(先去分母再括號(hào),移項(xiàng)變號(hào)要記牢.同類各項(xiàng)去合并,系數(shù)化“1”還沒好.求得未知須檢驗(yàn),回代值等才算了).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意實(shí)數(shù)a、b,定義:a◆b=a2+ab+b2.若方程(x◆2)-5=0的兩根記為m、n,則m2+n2=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D為AC上一點(diǎn),且BD=BC.將△BCD沿直線BD折疊后,點(diǎn)C落在AB上的點(diǎn)E處,若AE=DE,則∠A的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于霧霾天氣頻發(fā),市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號(hào)的防霧霾口罩共20萬(wàn)只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價(jià)及工人生產(chǎn)提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
銷售單價(jià) | 18 | 12 |
生產(chǎn)提成 | 1 | 0.8 |
(1)若該公司五月份的銷售收入為300萬(wàn)元,求甲、乙兩種型號(hào)的產(chǎn)品分別是多少萬(wàn)只?
(2)公司實(shí)行計(jì)件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬(wàn)元,應(yīng)怎樣安排甲、乙兩種型號(hào)的產(chǎn)量,可使該月公司所獲利潤(rùn)最大?并求出最大利潤(rùn)(利潤(rùn)=銷售收入﹣投入總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1:y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線l2:y=﹣ x交于點(diǎn)P.直線l3:y=﹣ x+4與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,與直線l1交于點(diǎn)Q,與直線l2交于點(diǎn)R.
(1)點(diǎn)A的坐標(biāo)是 , 點(diǎn)B的坐標(biāo)是 , 點(diǎn)P的坐標(biāo)是;
(2)將△POB沿y軸折疊后,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P′,試判斷點(diǎn)P′是否在直線l3上,并說(shuō)明理由;
(3)求△PQR的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:x3ya+1是關(guān)于x,y的六次單項(xiàng)式,試求下列代數(shù)式的值:
(1)a2+2a+1
(2)(a+1)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題。
(1)定義新運(yùn)算:對(duì)于任意有理數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如,數(shù)字2和5在該新運(yùn)算下結(jié)果為﹣5.計(jì)算如下:
2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
求(﹣2)⊕3的值;
(2)對(duì)于有理數(shù)a、b,若定義運(yùn)算:ab= (﹣4)3的值等于
(3)請(qǐng)你定義一種新運(yùn)算,使得數(shù)字﹣4和6在你定義的新運(yùn)算下結(jié)果為20.寫出你定義的新運(yùn)算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x(x+2)=﹣x(x+2)的根是( 。
A. x1=0,x2=2B. x1=0,x2=﹣2C. x=0D. x=2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com