【題目】為了提高學(xué)生的綜合素質(zhì),某中學(xué)成立了以下社團(tuán):A.機(jī)器人,B.圍棋,C.羽毛球,D.電影配音.每人只能加入一個(gè)社團(tuán),為了解學(xué)生參加社團(tuán)的情況,從參加社團(tuán)的學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,其中圖(1)中A所占扇形的圓心角為36°.
根據(jù)以上信息,解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人,B所占扇形的圓心角是 度;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1000名學(xué)生加人了社團(tuán),請(qǐng)你估計(jì)這1000名學(xué)生中有多少人參加了羽毛球社團(tuán);
(4)在機(jī)器人社團(tuán)活動(dòng)中,由于甲、乙、丙、丁四人平時(shí)的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機(jī)器人大賽,用樹狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.
【答案】(1)200;144;(2)見解析;(3)300人;(4)
【解析】
(1)由A類有20人,所占扇形的圓心角為36°,即可求得這次被調(diào)查的學(xué)生數(shù);用這次被調(diào)查的學(xué)生數(shù)乘以B所占的百分比,即可求得B所占扇形的圓心角;
(2)首先求得C項(xiàng)目對(duì)應(yīng)人數(shù),即可補(bǔ)全統(tǒng)計(jì)圖;
(3)利用樣本估計(jì)總體,用該校1000學(xué)生數(shù)乘以參加了羽毛球社團(tuán)的人數(shù)所占的百分比即可得到結(jié)論;
(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式即可求得答案.
解:(1)∵A類有20人,所占扇形的圓心角為36°,
∴這次被調(diào)查的學(xué)生共有:20÷=200(人);
B所占扇形的圓心角是:360°×=144°.
故答案為:200,144;
(2)C項(xiàng)目對(duì)應(yīng)人數(shù)為:200﹣20﹣80﹣40=60(人);
補(bǔ)充如圖.
(3)1000×=300(人).
答:這1000名學(xué)生中有300人參加了羽毛球社團(tuán);
(4)畫樹狀圖得:
∵共有12種等可能的情況,恰好選中甲、乙兩位同學(xué)的有2種,
∴P(選中甲、乙)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(是常數(shù),)的與的部分對(duì)應(yīng)值如下表:
0 | 2 | ||||
6 | 0 | 6 |
下列結(jié)論:
①;
②當(dāng)時(shí),函數(shù)最小值為;
③若點(diǎn),點(diǎn)在二次函數(shù)圖象上,則;
④方程有兩個(gè)不相等的實(shí)數(shù)根.
其中,正確結(jié)論的序號(hào)是__________________.(把所有正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)為圖形上任意一點(diǎn),點(diǎn)為圖形上任意一點(diǎn),若點(diǎn)與點(diǎn)之間的距離始終滿足,則稱圖形與圖形相離.
(1)已知點(diǎn)、、、.
①與直線相離的點(diǎn)是 ;
②若直線與相離,求的取值范圍;
(2)設(shè)直線、直線及直線圍成的圖形為,⊙的半徑為,圓心的坐標(biāo)為,直接寫出⊙與圖形相離的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn)、.
(1)求、滿足的關(guān)系式及的值.
(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸相交于點(diǎn)A(﹣3,0)、點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線上一動(dòng)點(diǎn),聯(lián)結(jié)OD交線段AC于點(diǎn)E.
(1)求這條拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);
(2)求∠ACB的正切值;
(3)當(dāng)△AOE與△ABC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn);再過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn),...,按此做法進(jìn)行下去,則的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,是的平分線,是射線上一點(diǎn),.動(dòng)點(diǎn)從點(diǎn)出發(fā),以的速度沿水平向左作勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),也以的速度沿豎直向上作勻速運(yùn)動(dòng).連接,交于點(diǎn).經(jīng)過(guò)、、三點(diǎn)作圓,交于點(diǎn),連接、.設(shè)運(yùn)動(dòng)時(shí)間為,其中.
(1)求的值;
(2)是否存在實(shí)數(shù),使得線段的長(zhǎng)度最大?若存在,求出的值;若不存在,說(shuō)明理由.
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CF⊥AD.
(1)證明:點(diǎn)E是OB的中點(diǎn);
(2)若AB=8,求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com