【題目】已知拋物線的頂點(diǎn)為,與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,我們稱以為頂點(diǎn)且過點(diǎn),對(duì)稱軸與軸平行的拋物線為拋物線的“夢(mèng)之星”拋物線,直線為拋物線的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是和,則這條拋物線的解析式為________.
【答案】
【解析】
先求出y=x2+2x+1和y=2x+2的交點(diǎn)C′的坐標(biāo)為(1,4),再求出“夢(mèng)之星”拋物線y=x2+2x+1的頂點(diǎn)A坐標(biāo)(-1,0),接著利用點(diǎn)C和點(diǎn)C′關(guān)于x軸對(duì)稱得到C(1,-4),則可設(shè)頂點(diǎn)式y=a(x-1)2-4,然后把A點(diǎn)坐標(biāo)代入求出a的值即可得到原拋物線解析式.
∵y=x2+2x+1=(x+1)2,
∴A點(diǎn)坐標(biāo)為(1,0),
解方程組得或,
∴點(diǎn)C′的坐標(biāo)為(1,4),
∵點(diǎn)C和點(diǎn)C′關(guān)于x軸對(duì)稱,
∴C(1,4),
設(shè)原拋物線解析式為y=a(x1)24,
把A(1,0)代入得4a4=0,解得a=1,
∴原拋物線解析式為y=(x1)24=x22x3.
故答案為y=x22x3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD和CD分別平分△ABC的內(nèi)角∠EBA和外角∠ECA,BD交AC于F,連接AD.
(1)求證:∠BDC=∠BAC;
(2)若AB=AC,請(qǐng)判斷△ABD的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,若AF=BF,求∠EBA的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字與例題,并解答。
將一個(gè)多項(xiàng)式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法。例如:以下式子的分解因式的方法叉稱為分組分解法。
(1)試用“分組分解法”分解因式:
(2)已知四個(gè)實(shí)數(shù)a,b,c,d滿足。并且,,,同時(shí)成立。
①當(dāng)k=1時(shí),求a+c的值;
②當(dāng)k≠0時(shí),用含a的代數(shù)式分別表示b、c、d。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行團(tuán)去景點(diǎn)游覽,共有成人和兒童20人,且旅行團(tuán)中兒童人數(shù)多于成人.景點(diǎn)規(guī)定:成人票40元/張,兒童票20元/張.
(1)若20人買門票共花費(fèi)560元,求成人和兒童各多少人?
(2)景區(qū)推出“慶元旦”優(yōu)惠方案,具體方案為:
方案一:購買一張成人票免一張兒童票費(fèi)用;
方案二:成人票和兒童票都打八折優(yōu)惠;
設(shè):旅行團(tuán)中有成人a人,旅行團(tuán)的門票總費(fèi)用為W元.
①方案一:_____________________;
方案二:____________________;
②試隨著a的變化,哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若所求的二次函數(shù)圖象與拋物線有相同的頂點(diǎn),并且在對(duì)稱軸的左側(cè),隨的增大而增大,在對(duì)稱軸的右側(cè),隨的增大而減小,則所求二次函數(shù)的解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一次函數(shù)(k,b是常數(shù),且).
(1)若該函數(shù)的圖象過點(diǎn),試判斷點(diǎn)是否也在此函數(shù)的圖象上,并說明理由.
(2)已知點(diǎn)和點(diǎn)都在該一次函數(shù)的圖象上,求k的值.
(3)若,點(diǎn)在該一次函數(shù)圖象上,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC 中,AB=AC,∠BAC=90,D、E 分別在 BC、AC 邊上,連接 AD、BE 相交于點(diǎn) F,且∠CAD=∠ABE.
(1)求證:BF=AC;
(2)如圖2,連接 CF,若 EF=EC,求∠CFD 的度數(shù);
(3)如圖3,在⑵的條件下,若 AE=3,求 BF 的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com