【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,且AEF為等邊三角形

(1)求證:DFB是等腰三角形;

(2)若DA=AF,求證:CFAB.

【答案】(1)證明見解析;(2)證明見解析

【解析】

試題分析:(1)由AB是O直徑,得到ACB=90°,由于AEF為等邊三角形,得到CAB=EFA=60°,根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論;

(2)過點A作AMDF于點M,設(shè)AF=2a,根據(jù)等邊三角形的性質(zhì)得到FM=EN=a,AM=a,在根據(jù)已知條件得到AB=AF+BF=8a,根據(jù)直角三角形的性質(zhì)得到AE=EF=AF=CE=2a,推出ECF=EFC,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.

試題解析:(1)AB是O直徑,∴∠ACB=90°,∵△AEF為等邊三角形,∴∠CAB=EFA=60°,∴∠B=30°,∵∠EFA=B+FDB,∴∠B=FDB=30°,∴△DFB是等腰三角形;

(2)過點A作AMDF于點M,設(shè)AF=2a,∵△AEF是等邊三角形,FM=EN=a,AM=a,在RtDAM中,AD=AF=a,AM=DM=5a,DF=BF=6a,AB=AF+BF=8a,在RtABC中,B=30°,ACB=90°,AC=4a,AE=EF=AF=CE=2a,∴∠ECF=EFC,∵∠AEF=ECF+EFC=60°,∴∠CFE=30°,∴∠AFC=AFE+EFC=60°+30°=90°,CFAB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)圓的一些結(jié)論,其中正確的是(

A.任意三點可以確定一個圓B.相等的圓心角所對的弧相等

C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.圓內(nèi)接四邊形對角互補

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C到點A、點B的距離相等,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為 x ( x 大于0)秒.

(1)點C表示的數(shù)是;
(2)當(dāng) 秒時,點P到達點A處?
(3)運動過程中點P表示的數(shù)是(用含字母 的式子表示);
(4)當(dāng)P,C之間的距離為2個單位長度時,求 x 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F(xiàn)在函數(shù)y= (x>0)的圖象上,直線EF分別與x軸、y軸交于點A,B,且BE:BF=1:m.過點E作EP⊥y軸于P,已知△OEP的面積為1,則k值是 , △OEF的面積是(用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個五角星圖案,則∠A+∠B+∠C+∠D+∠E的度數(shù)是(
A.180°
B.150°
C.135°
D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是( 。

A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ABC,點E在邊AB上,AED60°,則一定有

AADE20° B.ADE30°

C.ADEADC D.ADEADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣3×106)(4×104)的值用科學(xué)記數(shù)法表示為

查看答案和解析>>

同步練習(xí)冊答案